化工学报 ›› 2024, Vol. 75 ›› Issue (S1): 108-117.DOI: 10.11949/0438-1157.20240887
收稿日期:
2024-08-03
修回日期:
2024-09-05
出版日期:
2024-12-25
发布日期:
2024-12-17
通讯作者:
杜文静
作者简介:
任冠宇(2000—),男,硕士研究生,202314520@mail.sdu.edu.cn
Guanyu REN(), Yifei ZHANG, Xinze LI, Wenjing DU(
)
Received:
2024-08-03
Revised:
2024-09-05
Online:
2024-12-25
Published:
2024-12-17
Contact:
Wenjing DU
摘要:
印刷电路板式换热器(PCHE)作为一种新型微通道换热器,在超临界二氧化碳(SCO2)布雷顿循环中广泛应用。通过数值模拟分析了SCO2在翼型PCHE通道中的热工水力性能。结果表明,改进翅片尺寸和迎角能提高表面传热系数与综合性能。随着相关参数变化程度增大,对应的表面传热系数与综合性能进一步提高。在翅片中心开槽能够降低摩擦因子,但综合性能下降。结合翅片尺寸、方位、形状的三个结构参数的正交试验表明,翅片无量纲开槽宽度对流动传热性能的影响最大。在样本范围内,翅片扩大倍数为1.4,迎角为20°且不开槽的结构综合性能最佳。不同结构的翼型PCHE流动传热性能的分析可为SCO2冷却理论研究和PCHE典型工程应用提供参考和借鉴。
中图分类号:
任冠宇, 张义飞, 李新泽, 杜文静. 翼型印刷电路板式换热器流动传热特性数值研究[J]. 化工学报, 2024, 75(S1): 108-117.
Guanyu REN, Yifei ZHANG, Xinze LI, Wenjing DU. Numerical study on flow and heat transfer characteristics of airfoil printed circuit heat exchangers[J]. CIESC Journal, 2024, 75(S1): 108-117.
水平序号 | 翅片扩大倍数M | 翅片迎角θ | 翅片无量纲开槽宽度ζ |
---|---|---|---|
1 | 1 | 0 | 0 |
2 | 1.1 | 5 | 0.02 |
3 | 1.2 | 10 | 0.04 |
4 | 1.3 | 15 | 0.06 |
5 | 1.4 | 20 | 0.08 |
表1 正交试验因素水平
Table 1 Orthogonal test factor level
水平序号 | 翅片扩大倍数M | 翅片迎角θ | 翅片无量纲开槽宽度ζ |
---|---|---|---|
1 | 1 | 0 | 0 |
2 | 1.1 | 5 | 0.02 |
3 | 1.2 | 10 | 0.04 |
4 | 1.3 | 15 | 0.06 |
5 | 1.4 | 20 | 0.08 |
Case | M | θ/(°) | ζ | H/(kW/(m2·K)) | f×103 | PEC |
---|---|---|---|---|---|---|
M1θ1ζ1 | 1 | 0 | 0 | 5.66 | 8.79 | 1.000 |
M1θ2ζ3 | 1 | 5 | 0.04 | 5.61 | 8.74 | 0.978 |
M1θ3ζ5 | 1 | 10 | 0.08 | 5.67 | 9.29 | 0.966 |
M1θ4ζ2 | 1 | 15 | 0.02 | 5.86 | 9.22 | 0.989 |
M1θ5ζ4 | 1 | 20 | 0.06 | 6.19 | 10.63 | 1.000 |
M2θ1ζ5 | 1.1 | 0 | 0.08 | 5.51 | 8.57 | 0.971 |
M2θ2ζ2 | 1.1 | 5 | 0.02 | 5.76 | 8.71 | 1.001 |
M2θ3ζ4 | 1.1 | 10 | 0.06 | 5.87 | 9.48 | 0.985 |
M2θ4ζ1 | 1.1 | 15 | 0 | 6.26 | 9.76 | 1.040 |
M2θ5ζ3 | 1.1 | 20 | 0.04 | 6.08 | 10.26 | 0.994 |
M3θ1ζ4 | 1.2 | 0 | 0.06 | 5.69 | 8.70 | 0.987 |
M3θ2ζ1 | 1.2 | 5 | 0 | 6.03 | 8.65 | 1.065 |
M3θ3ζ3 | 1.2 | 10 | 0.04 | 6.12 | 9.50 | 1.016 |
M3θ4ζ5 | 1.2 | 15 | 0.08 | 6.18 | 10.61 | 0.992 |
M3θ5ζ2 | 1.2 | 20 | 0.02 | 5.91 | 10.05 | 0.995 |
M4θ1ζ3 | 1.3 | 0 | 0.04 | 5.97 | 8.92 | 1.016 |
M4θ2ζ5 | 1.3 | 5 | 0.08 | 5.72 | 8.89 | 0.985 |
M4θ3ζ2 | 1.3 | 10 | 0.02 | 5.89 | 9.25 | 1.008 |
M4θ4ζ4 | 1.3 | 15 | 0.06 | 6.13 | 10.78 | 0.992 |
M4θ5ζ1 | 1.3 | 20 | 0 | 6.73 | 11.03 | 1.113 |
M5θ1ζ2 | 1.4 | 0 | 0.02 | 5.99 | 9.22 | 1.030 |
M5θ2ζ4 | 1.4 | 5 | 0.06 | 6.00 | 9.01 | 1.015 |
M5θ3ζ1 | 1.4 | 10 | 0 | 6.48 | 9.66 | 1.090 |
M5θ4ζ3 | 1.4 | 15 | 0.04 | 6.56 | 10.99 | 1.037 |
M5θ5ζ5 | 1.4 | 20 | 0.08 | 6.58 | 11.31 | 1.035 |
表2 正交试验
Table 2 Orthogonal test
Case | M | θ/(°) | ζ | H/(kW/(m2·K)) | f×103 | PEC |
---|---|---|---|---|---|---|
M1θ1ζ1 | 1 | 0 | 0 | 5.66 | 8.79 | 1.000 |
M1θ2ζ3 | 1 | 5 | 0.04 | 5.61 | 8.74 | 0.978 |
M1θ3ζ5 | 1 | 10 | 0.08 | 5.67 | 9.29 | 0.966 |
M1θ4ζ2 | 1 | 15 | 0.02 | 5.86 | 9.22 | 0.989 |
M1θ5ζ4 | 1 | 20 | 0.06 | 6.19 | 10.63 | 1.000 |
M2θ1ζ5 | 1.1 | 0 | 0.08 | 5.51 | 8.57 | 0.971 |
M2θ2ζ2 | 1.1 | 5 | 0.02 | 5.76 | 8.71 | 1.001 |
M2θ3ζ4 | 1.1 | 10 | 0.06 | 5.87 | 9.48 | 0.985 |
M2θ4ζ1 | 1.1 | 15 | 0 | 6.26 | 9.76 | 1.040 |
M2θ5ζ3 | 1.1 | 20 | 0.04 | 6.08 | 10.26 | 0.994 |
M3θ1ζ4 | 1.2 | 0 | 0.06 | 5.69 | 8.70 | 0.987 |
M3θ2ζ1 | 1.2 | 5 | 0 | 6.03 | 8.65 | 1.065 |
M3θ3ζ3 | 1.2 | 10 | 0.04 | 6.12 | 9.50 | 1.016 |
M3θ4ζ5 | 1.2 | 15 | 0.08 | 6.18 | 10.61 | 0.992 |
M3θ5ζ2 | 1.2 | 20 | 0.02 | 5.91 | 10.05 | 0.995 |
M4θ1ζ3 | 1.3 | 0 | 0.04 | 5.97 | 8.92 | 1.016 |
M4θ2ζ5 | 1.3 | 5 | 0.08 | 5.72 | 8.89 | 0.985 |
M4θ3ζ2 | 1.3 | 10 | 0.02 | 5.89 | 9.25 | 1.008 |
M4θ4ζ4 | 1.3 | 15 | 0.06 | 6.13 | 10.78 | 0.992 |
M4θ5ζ1 | 1.3 | 20 | 0 | 6.73 | 11.03 | 1.113 |
M5θ1ζ2 | 1.4 | 0 | 0.02 | 5.99 | 9.22 | 1.030 |
M5θ2ζ4 | 1.4 | 5 | 0.06 | 6.00 | 9.01 | 1.015 |
M5θ3ζ1 | 1.4 | 10 | 0 | 6.48 | 9.66 | 1.090 |
M5θ4ζ3 | 1.4 | 15 | 0.04 | 6.56 | 10.99 | 1.037 |
M5θ5ζ5 | 1.4 | 20 | 0.08 | 6.58 | 11.31 | 1.035 |
1 | Saeed M, Kim M H. Thermal and hydraulic performance of SCO2 PCHE with different fin configurations[J]. Applied Thermal Engineering, 2017, 127: 975-985. |
2 | Xie G N, Xu X X, Lei X L, et al. Heat transfer behaviors of some supercritical fluids: a review[J]. Chinese Journal of Aeronautics, 2022, 35(1): 290-306. |
3 | Lee S M, Kim K Y. A parametric study of the thermal-hydraulic performance of a zigzag printed circuit heat exchanger[J]. Heat Transfer Engineering, 2014, 35(13): 1192-1200. |
4 | Wu P, Ma Y D, Gao C T, et al. A review of research and development of supercritical carbon dioxide Brayton cycle technology in nuclear engineering applications[J]. Nuclear Engineering and Design, 2020, 368: 110767. |
5 | Li M J, Zhu H H, Guo J Q, et al. The development technology and applications of supercritical CO2 power cycle in nuclear energy, solar energy and other energy industries[J]. Applied Thermal Engineering, 2017, 126: 255-275. |
6 | Song J, Wang Y X, Wang K, et al. Combined supercritical CO2 (SCO2) cycle and organic Rankine cycle (ORC) system for hybrid solar and geothermal power generation: thermoeconomic assessment of various configurations[J]. Renewable Energy, 2021, 174: 1020-1035. |
7 | Sánchez D, Chacartegui R, Muñoz de Escalona J M, et al. Performance analysis of a MCFC & supercritical carbon dioxide hybrid cycle under part load operation[J]. International Journal of Hydrogen Energy, 2011, 36(16): 10327-10336. |
8 | Mohammadi K, McGowan J G. Thermoeconomic analysis of multi-stage recuperative Brayton cycles(part Ⅱ): Waste energy recovery using CO2 and organic Rankine power cycles[J]. Energy Conversion and Management, 2019, 185: 920-934. |
9 | Zhu H T, Xie G N, Yuan H, et al. Thermodynamic assessment of combined supercritical CO2 cycle power systems with organic Rankine cycle or Kalina cycle[J]. Sustainable Energy Technologies and Assessments, 2022, 52: 102166. |
10 | Li Z Z, Liu X J, Shao Y J, et al. Research and development of supercritical carbon dioxide coal-fired power systems[J]. Journal of Thermal Science, 2020, 29(3): 546-575. |
11 | 白万金, 徐肖肖, 吴杨杨. 低质量流速下超临界CO2在管内冷却换热特性[J]. 化工学报, 2016, 67(4): 1244-1250. |
Bai W J, Xu X X, Wu Y Y. Cooling and heat transfer characteristics of supercritical CO2 in tube at low mass flow rate[J]. CIESC Journal, 2016, 67(4): 1244-1250. | |
12 | 谢瑶, 李剑锐, 胡海涛. 印刷电路板式换热器内超临界甲烷流动换热特性模拟[J]. 化工学报, 2021, 72(S1): 203-209. |
Xie Y, Li J R, Hu H T. Simulation of supercritical methane flow and heat transfer characteristics in printed circuit heat exchanger[J]. CIESC Journal, 2021, 72(S1): 203-209. | |
13 | Ahn Y, Bae S J, Kim M, et al. Review of supercritical CO2 power cycle technology and current status of research and development[J]. Nuclear Engineering and Technology, 2015, 47(6): 647-661. |
14 | Ahn Y, Lee J, Kim S G, et al. Design consideration of supercritical CO2 power cycle integral experiment loop[J]. Energy, 2015, 86: 115-127. |
15 | Kim I H, No H C. Thermal hydraulic performance analysis of a printed circuit heat exchanger using a helium-water test loop and numerical simulations[J]. Applied Thermal Engineering, 2011, 31(17/18): 4064-4073. |
16 | Kim S G, Lee Y, Ahn Y, et al. CFD aided approach to design printed circuit heat exchangers for supercritical CO2 Brayton cycle application[J]. Annals of Nuclear Energy, 2016, 92: 175-185. |
17 | Ji Y X, Xing K X, Cen K F, et al. Numerical study on flow and heat transfer characteristics of trapezoidal printed circuit heat exchanger[J]. Micromachines, 2021, 12(12): 1589. |
18 | 张海燕, 郭江峰, 淮秀兰, 等. PCHE内轴向导热对局部换热性能的影响研究[J]. 化工学报, 2019, 70(12): 4590-4598. |
Zhang H Y, Guo J F, Huai X L, et al. Investigations of axial conduction effect on local heat transfer performance in PCHE[J]. CIESC Journal, 2019, 70(12): 4590-4598. | |
19 | 张义飞, 刘舫辰, 张双星, 等. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190 |
Zhang Y F, Liu F C, Zhang S X, et al. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide[J]. CIESC Journal, 2023, 74(S1): 183-190. | |
20 | Zhang L J, Li W, Zeng M, et al. Characterization of PCM-PCHE and its effect on the suppression of temperature fluctuations in the SCO2 Brayton cycle[J]. Thermal Science and Engineering Progress, 2024, 52: 102692. |
21 | Jiang T, Li M J, Yang J Q. Research on optimization of structural parameters for airfoil fin PCHE based on machine learning[J]. Applied Thermal Engineering, 2023, 229: 120498. |
22 | Sui X, Yao S B, Liu C Y, et al. A universal ANN-based approach predicting P C H E s ' off-design performance across various operating conditions of sCO2 RCBCs[J]. Applied Thermal Engineering, 2024, 245: 122885. |
23 | Xu X Y, Ma T, Li L, et al. Optimization of fin arrangement and channel configuration in an airfoil fin PCHE for supercritical CO2 cycle[J]. Applied Thermal Engineering, 2014, 70(1): 867-875. |
24 | Xu X Y, Wang Q W, Li L, et al. Thermal-hydraulic performance of different discontinuous fins used in a printed circuit heat exchanger for supercritical CO2 [J]. Numerical Heat Transfer, Part A: Applications, 2015, 68(10): 1067-1086. |
25 | Ma T, Xin F, Li L, et al. Effect of fin-endwall fillet on thermal hydraulic performance of airfoil printed circuit heat exchanger[J]. Applied Thermal Engineering, 2015, 89: 1087-1095. |
26 | Chen F, Zhang L S, Huai X L, et al. Comprehensive performance comparison of airfoil fin PCHEs with NACA 00XX series airfoil[J]. Nuclear Engineering and Design, 2017, 315: 42-50. |
27 | Chu W X, Li X H, Ma T, et al. Study on hydraulic and thermal performance of printed circuit heat transfer surface with distributed airfoil fins[J]. Applied Thermal Engineering, 2017, 114: 1309-1318. |
28 | Chu W X, Bennett K, Cheng J, et al. Thermo-hydraulic performance of printed circuit heat exchanger with different cambered airfoil fins[J]. Heat Transfer Engineering, 2020, 41(8): 708-722. |
29 | Li X L, Tang G H, Fan Y H, et al. Numerical analysis of slotted airfoil fins for printed circuit heat exchanger in S-CO2 brayton cycle[J]. Journal of Nuclear Engineering and Radiation Science, 2019, 5(4): 041303. |
30 | Tang L H, Pan J, Sundén B. Investigation on thermal-hydraulic performance in a printed circuit heat exchanger with airfoil and vortex generator fins for supercritical liquefied natural gas[J]. Heat Transfer Engineering, 2021, 42(10): 803-823. |
31 | Li Z, Lu D G, Wang Z C, et al. Analysis on flow and heat transfer performance of SCO2 in airfoil channels with different fin angles of attack[J]. Energy, 2023, 282: 128600. |
32 | Xi K, Zhao X, Xie Z H, et al. Thermal-hydraulic characteristics of carbon dioxide in printed circuit heat exchangers with staggered airfoil fins[J]. Processes, 2023, 11(8): 2244. |
33 | Wu J X, Xiao J B. Numerical study of crossed airfoil fins in a printed circuit heat exchanger[J]. Applied Thermal Engineering, 2023, 230: 120646. |
34 | Kuo G C, Xie J Y, Chueh C C. Numerical thermal-hydraulic analysis and multi-objective design optimization of a printed circuit heat exchanger with airfoil overlap fin channels[J]. Engineering Reports, 2024, 6(2): e12719. |
35 | Kwon J G, Kim T H, Park H S, et al. Optimization of airfoil-type PCHE for the recuperator of small scale brayton cycle by cost-based objective function[J]. Nuclear Engineering and Design, 2016, 298: 192-200. |
36 | Li H Z, Kruizenga A, Anderson M, et al. Development of a new forced convection heat transfer correlation for CO2 in both heating and cooling modes at supercritical pressures[J]. International Journal of Thermal Sciences, 2011, 50(12): 2430-2442. |
37 | Chu W X, Li X H, Ma T, et al. Experimental investigation on SCO2-water heat transfer characteristics in a printed circuit heat exchanger with straight channels[J]. International Journal of Heat and Mass Transfer, 2017, 113: 184-194. |
[1] | 李焱, 郑利军, 张恩勇, 王云飞. 深水海底管道软管内部流体渗透特性模型与试验研究[J]. 化工学报, 2024, 75(S1): 118-125. |
[2] | 李新泽, 张双星, 任冠宇, 洪瑞, 杜文静. 大功率LED热管理用脉动热管热性能[J]. 化工学报, 2024, 75(S1): 126-134. |
[3] | 杨勇, 祖子轩, 李煜坤, 王东亮, 范宗良, 周怀荣. T型圆柱形微通道内CO2碱液吸收数值模拟[J]. 化工学报, 2024, 75(S1): 135-142. |
[4] | 黄俊豪, 庞克亮, 孙方远, 刘福军, 谷致远, 韩龙, 段衍泉, 冯妍卉. 干熄炉料钟结构对焦炭布料粒径均匀度影响的模拟研究[J]. 化工学报, 2024, 75(S1): 158-169. |
[5] | 董新宇, 边龙飞, 杨怡怡, 张宇轩, 刘璐, 王腾. 冷却条件下倾斜上升管S-CO2流动与传热特性研究[J]. 化工学报, 2024, 75(S1): 195-205. |
[6] | 郭骐瑞, 任丽媛, 陈康, 黄翔宇, 马卫华, 肖乐勤, 周伟良. 用于HTPB推进剂浆料的静态混合管数值模拟[J]. 化工学报, 2024, 75(S1): 206-216. |
[7] | 李匡奚, 于佩潜, 王江云, 魏浩然, 郑志刚, 冯留海. 微气泡旋流气浮装置内流动分析与结构优化[J]. 化工学报, 2024, 75(S1): 223-234. |
[8] | 唐溯, 郑子鏖, 魏翰泽, 许晓玲, 翟晓强. PMMA/PEG600/CNT复合定型相变材料制备与导热强化[J]. 化工学报, 2024, 75(S1): 309-320. |
[9] | 汪张洲, 唐天琪, 夏嘉俊, 何玉荣. 基于复合相变材料的电池热管理性能模拟[J]. 化工学报, 2024, 75(S1): 329-338. |
[10] | 秦思宇, 刘艺佳, 杨佳成, 佟薇, 金立文, 孟祥兆. 受限蒸汽腔内气液两相传热特性研究[J]. 化工学报, 2024, 75(S1): 47-55. |
[11] | 胡俭, 姜静华, 范生军, 刘建浩, 邹海江, 蔡皖龙, 王沣浩. 中深层U型地埋管换热器取热特性研究[J]. 化工学报, 2024, 75(S1): 76-84. |
[12] | 杜得辉, 冯威, 张江辉, 项燕龙, 乔高攀, 李蔚. 微型翅片疏水复合强化管管内流动沸腾换热预测模型[J]. 化工学报, 2024, 75(S1): 95-107. |
[13] | 陈巨辉, 苏潼, 李丹, 陈立伟, 吕文生, 孟凡奇. 翅形扰流片作用下的微通道换热特性[J]. 化工学报, 2024, 75(9): 3122-3132. |
[14] | 李舒月, 王欢, 周少强, 毛志宏, 张永民, 王军武, 吴秀花. 基于CPFD方法的U3O8氢还原流化床反应器数值模拟[J]. 化工学报, 2024, 75(9): 3133-3151. |
[15] | 陈超伟, 柳洋, 杜文静, 李金波, 史大阔, 辛公明. 局部热点下微肋通道流动传热特性[J]. 化工学报, 2024, 75(9): 3113-3121. |
阅读次数 | ||||||
全文 175
|
|
|||||
摘要 |
|
|||||