化工学报 ›› 2019, Vol. 70 ›› Issue (9): 3377-3384.DOI: 10.11949/0438-1157.20190209
李安军1,2(),陈晓庆1,2,李健1,2,黄超1,2,周振1,2,卢奇1,2
收稿日期:
2019-03-07
修回日期:
2019-05-20
出版日期:
2019-09-05
发布日期:
2019-09-05
通讯作者:
李安军
作者简介:
李安军(1979—),男,硕士,高级工程师,基金资助:
Anjun LI1,2(),Xiaoqing CHEN1,2,Jian LI1,2,Chao HUANG1,2,Zhen ZHOU1,2,Qi LU1,2
Received:
2019-03-07
Revised:
2019-05-20
Online:
2019-09-05
Published:
2019-09-05
Contact:
Anjun LI
摘要:
通过实验的方式和对比的方法对两种不同波纹深度板片组成的可拆板式换热器的传热及阻力特性进行研究,每种深度板片组成的板式换热器采用硬板63°/63°、软板29°/29°和混合板63°/29°三种波纹角度组合,此实验采用水/水换热,设置了两种工况,一种是冷热两侧等流速,另一种是固定热侧流速,计算两种工况下传热系数和压降的数值,描绘出对应的曲线。实验证明相同波纹夹角板片组合,该浅密波纹板片的传热系数均高于普通波纹板片,平均高于140 W/(m2·K),即传热系数平均提高1.9%,在混合板中两者传热系数的差别在300 W/(m2·K)以上,提高达4.8%,阻力的变化趋势与传热系数相同。推导出每组设备适用于一定Reynolds数范围的Nusselt数方程和摩擦系数方程,与已有研究成果对比分析,证明了该实验的正确性,同时也揭示这两种波纹板片的传热和阻力性能有优化的余地,为进一步的研究指明了方向。该实验也表明,除深度外的几何尺寸和结构均相同的两种波纹板片,虽然外形接近,但对应的Nusselt数和摩擦系数关系式却不相同,而且差别很大。
中图分类号:
李安军, 陈晓庆, 李健, 黄超, 周振, 卢奇. 两种波纹深度板片传热及阻力特性的对比实验研究[J]. 化工学报, 2019, 70(9): 3377-3384.
Anjun LI, Xiaoqing CHEN, Jian LI, Chao HUANG, Zhen ZHOU, Qi LU. Experimental study on heat transfer and resistance characteristics of two corrugated depth plates[J]. CIESC Journal, 2019, 70(9): 3377-3384.
名称 | 设备参数 | |||||
---|---|---|---|---|---|---|
A | B | C | A′ | B′ | C′ | |
β | 63°/63° | 63°/29° | 29°/29° | 63°/29° | 63°/29° | 29°/29° |
N/片 | 13(H) | 7(H)+6(L) | 13(L) | 13(H) | 7(H)+6(L) | 13(L) |
Y/mm | 2.48 | 2.48 | 2.48 | 3.46 | 3.46 | 3.46 |
X/mm | 8 | 8 | 8 | 12 | 12 | 12 |
l/mm | 1480 | 1480 | 1480 | 1480 | 1480 | 1480 |
w/mm | 340 | 340 | 340 | 340 | 340 | 340 |
?/mm | 196 | 196 | 196 | 196 | 196 | 196 |
L W/mm | 536 | 536 | 536 | 536 | 536 | 536 |
ψ | 1.21 | 1.21 | 1.21 | 1.21 | 1.21 | 1.21 |
D h/mm | 4.08 | 4.08 | 4.08 | 5.69 | 5.69 | 5.69 |
表1 被测试设备参数
Table 1 Parameters of tested products
名称 | 设备参数 | |||||
---|---|---|---|---|---|---|
A | B | C | A′ | B′ | C′ | |
β | 63°/63° | 63°/29° | 29°/29° | 63°/29° | 63°/29° | 29°/29° |
N/片 | 13(H) | 7(H)+6(L) | 13(L) | 13(H) | 7(H)+6(L) | 13(L) |
Y/mm | 2.48 | 2.48 | 2.48 | 3.46 | 3.46 | 3.46 |
X/mm | 8 | 8 | 8 | 12 | 12 | 12 |
l/mm | 1480 | 1480 | 1480 | 1480 | 1480 | 1480 |
w/mm | 340 | 340 | 340 | 340 | 340 | 340 |
?/mm | 196 | 196 | 196 | 196 | 196 | 196 |
L W/mm | 536 | 536 | 536 | 536 | 536 | 536 |
ψ | 1.21 | 1.21 | 1.21 | 1.21 | 1.21 | 1.21 |
D h/mm | 4.08 | 4.08 | 4.08 | 5.69 | 5.69 | 5.69 |
项目 | 波纹夹角 | Nu | f | Re范围 |
---|---|---|---|---|
PHE A | 63°/63° | Nu A=0.3095Re 0.7241 Pr 0.4 | f A=1.133 Re -0.1186 | 1200<Re<6000 |
PHE B | 63°/29° | Nu B=0.3331Re 0.6907 Pr 0.4 | f B=2.091 Re -0.2804 | 1200<Re<6000 |
PHE C | 29°/29° | Nu C=0.209Re 0.702 Pr 0.4 | f C=1.356 Re -0.3374 | 1200<Re<6000 |
PHE A′ | 63°/63° | Nu A′=0.2478Re 0.7439 Pr 0.4 | f A′=0.776 Re -0.0832 | 1800<Re<9000 |
PHE B′ | 63°/29° | Nu B′=0.272Re 0.705 Pr 0.4 | f B′=0.5876 Re -0.1829 | 1800<Re<9000 |
PHE C′ | 29°/29° | Nu C′=0.1768Re 0.7163 Pr 0.4 | f C′=1.056 Re -0.3273 | 1800<Re<9000 |
表3 Nusselt数和摩擦系数方程式
Table 3 Function of Nusselt number and friction factor
项目 | 波纹夹角 | Nu | f | Re范围 |
---|---|---|---|---|
PHE A | 63°/63° | Nu A=0.3095Re 0.7241 Pr 0.4 | f A=1.133 Re -0.1186 | 1200<Re<6000 |
PHE B | 63°/29° | Nu B=0.3331Re 0.6907 Pr 0.4 | f B=2.091 Re -0.2804 | 1200<Re<6000 |
PHE C | 29°/29° | Nu C=0.209Re 0.702 Pr 0.4 | f C=1.356 Re -0.3374 | 1200<Re<6000 |
PHE A′ | 63°/63° | Nu A′=0.2478Re 0.7439 Pr 0.4 | f A′=0.776 Re -0.0832 | 1800<Re<9000 |
PHE B′ | 63°/29° | Nu B′=0.272Re 0.705 Pr 0.4 | f B′=0.5876 Re -0.1829 | 1800<Re<9000 |
PHE C′ | 29°/29° | Nu C′=0.1768Re 0.7163 Pr 0.4 | f C′=1.056 Re -0.3273 | 1800<Re<9000 |
1 | 林宗虎, 汪军, 李瑞阳, 等 . 强化传热技术[M]. 北京: 化学工业出版社, 2007: 5-18. |
Lin Z H , Wang J , Li R Y , et al . Enhanced Heat Transfer Technology[M]. Beijing: Chemical Industry Press, 2007: 5-18. | |
2 | 张冠敏 . 复合波纹板式换热器强化传热机理及传热特性研究[D]. 济南: 山东大学, 2006. |
Zhang G M . Study on the heat transfer enhancement mechanism and heat transfer characteristics of composite corrugated plate heat exchanger[D]. Jinan: Shandong University, 2006. | |
3 | 杨崇麟 . 板式换热器工程设计手册[M]. 北京: 机械工业出版社, 1995: 19-26. |
Yang C L . Engineering Design Manual of Plate Heat Exchanger[M]. Beijing: China Machine Press, 1995: 19-26. | |
4 | Grijspeerdt K , Hazarika B , Vucinic D . Application of computational fluid dynamics to model the hydrodynamics of plate heat exchangers for milk processing[J]. Journal of Food Engineering, 2003, 57: 237-242. |
5 | Lozano A , Barreras F , Fueyo N , et al . The flow in an oil/water plate heat exchanger for the automotive industry[J]. Applied Thermal Engineering, 2008, 28(10): 1109-1117. |
6 | Tiwari A K , Ghosh P , Sarkar J , et al . Numerical investigation of heat transfer and fluid flow in plate heat exchanger using nanofluids[J]. International Journal of Thermal Sciences, 2014, 85: 93-103. |
7 | Gherasim I , Galanis N , Nguyen C T . Effects of smooth longitudinal passages and port configuration on the flow and thermal fields in a plate heat exchanger [J]. Applied Thermal Engineering, 2011, 31(17/18): 4113-4124. |
8 | Hur N , Lee M , Kang B H , et al . Numerical analysis of heat transfer in a plate heat exchanger[J]. Progress in Computational Fluid Dynamics, 2008, 8(7/8): 406-412. |
9 | Focke W W , Zachariades J , Olivier I . The effect of the corrugation angle on the thermohydraulic performance of plate heat exchangers[J]. International Journal of Heat and Mass Transfer, 1985, 28(8): 1469-1471. |
10 | Muley A , Manglik P M . Experimental study of turbulent flow heat transfer and pressure drop in a plate heat exchanger with chevron plates[J]. Journal of Heat Transfer, 1999, 121(1): 110-117. |
11 | Forooghi P , Hooman K . Experimental analysis of heat transfer of supercritical fluids in plate heat exchangers[J]. International Journal of Heat and Mass Transfer, 2014, 74: 448-459. |
12 | Khan T S , Khan M S , Chyu M C , et al . Experimental investigation of evaporation heat transfer and pressure drop of ammonia in a 60° chevron plate heat exchanger[J]. International Journal of Refrigeration, 2012, 35: 336-348. |
13 | Tovazhnyanski L L , Kapustenko P A , Tsibulnik V A . Heat transfer and hydraulic resistance in channels of plate heat exchangers[J]. Energetica, 1980, 9: 123-125. |
14 | Dovic D , Palm B , Svaic S . Generalized correlations for predicting heat transfer and pressure drop in plate heat exchanger channels of arbitrary geometry[J]. International Journal of Heat and Mass Transfer, 2009, 52(19/20): 4553-4563. |
15 | Gut A W , Pinto J M . Optimal configuration design for plate heat exchangers [J]. International Journal of Heat and Mass Transfer, 2004, 47(22): 4833-4848. |
16 | Arsenyeva O , Kapustenko P , Tovazhnyanskyy L , et al . The influence of plate corrugations geometry on plate heat exchanger performance in specified process conditions[J]. Energy, 2013, 57: 201-207. |
17 | 阴极翔, 李国君, 丰镇平 . 波纹通道板间距对通道内流动与换热影响的数值研究[J]. 热科学与技术, 2005, 4: 123-129. |
Yin J X , Li G J , Feng Z P . Numerical investigation of effects of plate spacing on flow and heat transfer in channels[J]. Journal of Thermal Science and Technology, 2005, 4: 123-129. | |
18 | 许国治, 王韻茵, 安元良, 等 . 流体在板式换热器人字形波纹通道内的动力特性[J]. 石油化工设备, 1985, 14(4): 1-10. |
Xu G Z , Wang Y Y , An Y L . Dynamic characteristics of the fluid in the serrated channels of the plate heat exchanger[J]. Journal of Petrochemical Equipment, 1985, 14(4): 1-10. | |
19 | 赵镇南 . 板式换热器人字波纹倾角对阻力及传热性能的影响[J]. 石油化工设备, 2001, 30: 1-3. |
Zhao Z N . Effects of the corrugated inclination angle on heat transfer and resistance performances of plate heat exchangers[J]. Journal of Petrochemical Equipment, 2001, 30: 1-3. | |
20 | 周明连 . 板式热交换器流动分布的理论分析与实验研究[J]. 北方交通大学学报, 2001, 25(1): 67-71. |
Zhou M L . Experimental and theoretical study on the flow distribution of plate heat exchanger[J]. Journal of Northern Jiaotong University, 2001, 25(1): 67-71. | |
21 | 叶莉 . 一种板式换热器板片的性能优化及理论分析[D]. 南京: 南京航空航天大学, 2012. |
Ye L . The performance optimization and theoretical analysis of a plate of heat exchanger [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. | |
22 | 黄莉 . 板式换热器波纹参数优化的数值模拟实验研究[D]. 北京: 北京化工大学, 2010. |
Huang L . Numerical simulation study on parameter optimization of corrugated plate heat exchanger[D]. Beijing: Beijing University of Chemical Technology, 2010. | |
23 | Bobbili P R , Sundén B , Das S K . An experimental investigation of the port flow maldistribution in small and large plate package heat exchangers[J]. Applied Thermal Engineering, 2006, 26(16): 1919-1926. |
24 | Moffat R J . Describing the uncertainties in experimental results [J]. Experimental Thermal and Fluid Science, 1988, 1: 3-17. |
25 | 杨士铭, 陶文铨 . 传热学[M]. 4版. 北京: 高等教育出版社, 2006: 1-10. |
Yang S M , Tao W Q . Heat Transmission [M]. 4th ed. Beijing: Higher Education Press, 2006: 1-10. | |
26 | 大连理工大学 . 化工原理(上册)[M]. 北京: 高等教育出版社, 2002: 254-257. |
Dalian University of Technology . Principles of Chemical Engineering(First of Two Volumes)[M]. Beijing: Higher Education Press, 2002: 254-257. | |
27 | Chisholm D , Wanniarachchi A S . Maldistribution in single pass mixed channel plate heat exchanger[C]//Shah R K. Compact Heat Exchangers for Power and Process Industries. New York: HTD-ASME, 1992: 95-99. |
28 | Gulenoglu C , Akturk F , Aradag S , et al . Experimental comparison of performances of three different plates for gasketed plate heat exchangers[J]. International Journal of Thermal Sciences, 2014, 75: 249-256. |
29 | Okada K , Ono M , Tomimura T , et al . Design and heat transfer characteristics of a new plate heat exchanger[J]. Heat Transfer Japanese Research, 1972, 1: 90-95. |
30 | Talik A C , Fletcher L S , Anand N K , et al . Heat transfer and pressure drop characteristics of a plate heat exchanger[C] // Fletcher L S , Toshio A . Proceedings of the ASME/JSME Thermal Engineering Conference. New York: ASME, 1995: 312-329. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[3] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[4] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[5] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[6] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[7] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[8] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[9] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[10] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[11] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[12] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[13] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[14] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[15] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||