1 |
李仲珍, 郭少龙, 陶文铨. 超临界LNG管内流动与换热特性研究[J]. 工程热物理学报, 2013, 34(12): 2314-2317.
|
|
Li Z Z, Guo S L, Tao W Q. Studies of supercritical convective heat transfer of LNG in tube [J]. Journal of Engineering Thermophysics, 2013, 34(12): 2314-2317.
|
2 |
王博杰, 匡以武, 齐超, 等. 中间介质气化器中超临界LNG换热过程分析[J]. 化工学报, 2015, 66(S2): 220-225.
|
|
Wang B J, Kuang Y W, Qi C, et al. Analysis of heat transfer to supercritical LNG in intermediate fluid vaporizer [J]. CIESC Journal, 2015, 66(S2): 220-225.
|
3 |
Duffey R B, Pioro I L. Experimental heat transfer of supercritical carbon dioxide flowing inside channels (survey) [J]. Nuclear Engineering and Design, 2005, 235(8): 913-924.
|
4 |
Cheng L X, Ribatski G, Thome J R. Analysis of supercritical CO2 cooling in macro- and micro-channels [J]. International Journal of Refrigeration, 2008, 31(8): 1301-1316.
|
5 |
Ehsan M M, Guan Z Q, Klimenko A Y. A comprehensive review on heat transfer and pressure drop characteristics and correlations with supercritical CO2 under heating and cooling applications [J]. Renewable and Sustainable Energy Reviews, 2018, 92: 658-675.
|
6 |
Chu W X, Li X H, Ma T, et al. Experimental investigation on SCO2-water heat transfer characteristics in a printed circuit heat exchanger with straight channels [J]. International Journal of Heat and Mass Transfer, 2017, 113: 184-194.
|
7 |
Ishizuk T. Thermal-hydraulic characteristics of a printed circuit heat exchanger in a supercritical CO2 loop[C]// 11th International Topical Meeting on Nuclear Reactor Thermal-Hydraulic. London, England, 2018.
|
8 |
Yoon S H, Kim J H, Hwang Y W, et al. Heat transfer and pressure drop characteristics during the in-tube cooling process of carbon dioxide in the supercritical region [J]. International Journal of Refrigeration, 2003, 26(8): 857-864.
|
9 |
Liu S H, Huang Y P, Liu G X, et al. Improvement of buoyancy and acceleration parameters for forced and mixed convective heat transfer to supercritical fluids flowing in vertical tubes [J]. International Journal of Heat and Mass Transfer, 2017, 106: 1144-1156.
|
10 |
Zhang Q, Li H X, Kong X F, et al. Special heat transfer characteristics of supercritical CO2 flowing in a vertically-upward tube with low mass flux [J]. International Journal of Heat and Mass Transfer, 2018, 122: 469-482.
|
11 |
Zhang Y D, Peng M J, Xia G L, et al. Numerical investigation on local heat transfer characteristics of S-CO2 in horizontal semicircular microtube [J]. Applied Thermal Engineering, 2019, 154: 380-392.
|
12 |
Bovard S, Abdi M, Nikou M R K, et al. Numerical investigation of heat transfer in supercritical CO2 and water turbulent flow in circular tubes [J]. The Journal of Supercritical Fluids, 2017, 119: 88-103.
|
13 |
Du Z X, Lin W S, Gu A Z. Numerical investigation of cooling heat transfer to supercritical CO2 in a horizontal circular tube [J]. The Journal of Supercritical Fluids, 2010, 55(1): 116-121.
|
14 |
Gu H F, Li H Z, Wang H J, et al. Experimental investigation on convective heat transfer from a horizontal miniature tube to methane at supercritical pressures [J]. Applied Thermal Engineering, 2013, 58(1/2): 490-498.
|
15 |
杜忠选, 林文胜, 顾安忠, 等. 竖直圆管内超临界甲烷冷却换热数值模拟[J]. 化工学报, 2009, 60(S1): 63-67.
|
|
Du Z X, Lin W S, Gu A Z, et al. Numerical simulation of cooling heat transfer to supercritical methane in vertical circular tube [J]. CIESC Journal, 2009, 60(S1): 63-67.
|
16 |
王亚洲, 华益新, 孟华. 超临界压力下低温甲烷的湍流传热数值研究[J]. 推进技术, 2010, 31(5): 606-611, 622.
|
|
Wang Y Z, Hua Y X, Meng H. Numerical investigation of turbulent heat transfer of cryogenic-propellant methane under supercritical pressures [J]. Journal of Propulsion Technology, 2010, 31(5): 606-611, 622.
|
17 |
Ely J F, Hanley H J M. Prediction of transport properties (I): Viscosity of fluids and mixtures [J]. Industrial & Engineering Chemistry Fundamentals, 1981, 20(4): 323-332.
|
18 |
Meng H, Yang V. A unified treatment of general fluid thermodynamics and its application to a preconditioning scheme [J]. Journal of Computational Physics, 2003, 189(1): 277-304.
|
19 |
Ely J F, Hanley H J M. Prediction of transport properties (Ⅱ): Thermal conductivity of pure fluids and mixtures [J]. Industrial & Engineering Chemistry Fundamentals, 1983, 22(1): 90-97.
|
20 |
Kwon J G, Kim T H, Park H S, et al. Optimization of airfoil-type PCHE for the recuperator of small scale Brayton cycle by cost-based objective function [J]. Nuclear Engineering and Design, 2016, 298: 192-200.
|
21 |
Han C L, Ren J J, Dong W P, et al. Numerical investigation of supercritical LNG convective heat transfer in a horizontal serpentine tube [J]. Cryogenics, 2016, 78: 1-13.
|
22 |
Xu X Y, Ma T, Li L, et al. Optimization of fin arrangement and channel configuration in an airfoil fin PCHE for supercritical CO2 cycle [J]. Applied Thermal Engineering, 2014, 70(1): 867-875.
|
23 |
Zhao Z C, Zhang X, Zhao K, et al. Numerical investigation on heat transfer and flow characteristics of supercritical nitrogen in a straight channel of printed circuit heat exchanger [J]. Applied Thermal Engineering, 2017, 126: 717-729.
|
24 |
Li H Z, Kruizenga A, Anderson M, et al. Development of a new forced convection heat transfer correlation for CO2 in both heating and cooling modes at supercritical pressures [J]. International Journal of Thermal Sciences, 2011, 50(12): 2430-2442.
|
25 |
Jackson J D. Consideration of the heat transfer properties of supercritical pressure water in connection with the cooling of advanced nuclear reactors [C]// The 13th Pacific Basin Nuclear Conference. 2002.
|