化工学报 ›› 2025, Vol. 76 ›› Issue (S1): 62-74.DOI: 10.11949/0438-1157.20241359
郭松源1(
), 周晓庆1, 缪五兵2, 汪彬2, 耑锐2, 曹庆泰1, 陈成成1, 杨光1(
), 吴静怡1
收稿日期:2024-11-27
修回日期:2024-12-04
出版日期:2025-06-25
发布日期:2025-06-26
通讯作者:
杨光
作者简介:郭松源(2000—),男,博士研究生,gsy0826@sjtu.edu.cn
基金资助:
Songyuan GUO1(
), Xiaoqing ZHOU1, Wubing MIAO2, Bin WANG2, Rui ZHUAN2, Qingtai CAO1, Chengcheng CHEN1, Guang YANG1(
), Jingyi WU1
Received:2024-11-27
Revised:2024-12-04
Online:2025-06-25
Published:2025-06-26
Contact:
Guang YANG
摘要:
为了研究火箭上升段含多孔板贮箱中低温推进剂的反馈增压过程,建立三维多相流多组分模型并使用NASA氦气增压液氢罐实验数据进行验证。对多孔隔板等比缩小计算多组流速下液氧的压降特性并进行拟合获得渗透率与压力跃变系数耦合到数值模型中。上升段过载变化过程中不同高度液体经过多孔板流阻不同造成界面弯曲。过载增大在扩散型入口下端形成高温射流导致界面处液相区分层厚度在过载指向侧更厚。上升过程中,72 s前界面处相变以蒸发为主,之后以冷凝为主。多孔板的存在阻碍贮箱内热自然对流使得最终相变量减少17.68%,同时使得出口平均压强增加3%左右。
中图分类号:
郭松源, 周晓庆, 缪五兵, 汪彬, 耑锐, 曹庆泰, 陈成成, 杨光, 吴静怡. 火箭上升段含多孔板液氧贮箱增压输运数值研究[J]. 化工学报, 2025, 76(S1): 62-74.
Songyuan GUO, Xiaoqing ZHOU, Wubing MIAO, Bin WANG, Rui ZHUAN, Qingtai CAO, Chengcheng CHEN, Guang YANG, Jingyi WU. Numerical study on characteristics of pressurized discharge in liquid oxygen tank equipped with porous plate in the ascent period of rocket[J]. CIESC Journal, 2025, 76(S1): 62-74.
| 经验参数 | 取值 |
|---|---|
| A | 1.06036 |
| B | 0.15610 |
| C | 0.19300 |
| D | 0.47635 |
| E | 1.03587 |
| F | 1.03587 |
| G | 1.76474 |
| H | 3.89411 |
表1 组分输运模型经验参数取值[13]
Table 1 Value of constants in the species transport model[13]
| 经验参数 | 取值 |
|---|---|
| A | 1.06036 |
| B | 0.15610 |
| C | 0.19300 |
| D | 0.47635 |
| E | 1.03587 |
| F | 1.03587 |
| G | 1.76474 |
| H | 3.89411 |
| 参数 | 液氧 | 氧气 | 氦气 |
|---|---|---|---|
| 密度/(kg/m3) | Boussinesq假设 | 理想气体 状态方程 | 理想气体 状态方程 |
| 比定压热容/(J/(kg·K)) | 1695.5 | 969.26 | 5195 |
| 热导率/(W/(m·K)) | 0.153 | kHe(T) | |
| 黏性系数/(μPa·s) | 2.032×10-5 | μHe(T) | |
| 摩尔质量/(g/mol) | 32 | 32 | 4 |
表2 流体热物理性质
Table 2 Thermo-physical properties of fluid
| 参数 | 液氧 | 氧气 | 氦气 |
|---|---|---|---|
| 密度/(kg/m3) | Boussinesq假设 | 理想气体 状态方程 | 理想气体 状态方程 |
| 比定压热容/(J/(kg·K)) | 1695.5 | 969.26 | 5195 |
| 热导率/(W/(m·K)) | 0.153 | kHe(T) | |
| 黏性系数/(μPa·s) | 2.032×10-5 | μHe(T) | |
| 摩尔质量/(g/mol) | 32 | 32 | 4 |
| 参数 | 2219Al | 泡沫层 |
|---|---|---|
| 密度/(kg/m3) | 2800 | 40 |
| 比定压热容/(J/(kg·K)) | 830 | 1470 |
| 热导率/(W/(m·K)) | 159 | 0.03 |
表3 固体热物理性质
Table 3 Thermo-physical properties of fluid
| 参数 | 2219Al | 泡沫层 |
|---|---|---|
| 密度/(kg/m3) | 2800 | 40 |
| 比定压热容/(J/(kg·K)) | 830 | 1470 |
| 热导率/(W/(m·K)) | 159 | 0.03 |
| 参数 | 2219Al初始条件设置 |
|---|---|
| 压强/kPa | 430 |
| 体积分数 | |
| 温度 | |
| 氧气质量分数 |
表4 增压输运过程初始条件设置
Table 4 Initial conditions in pressurized discharge
| 参数 | 2219Al初始条件设置 |
|---|---|
| 压强/kPa | 430 |
| 体积分数 | |
| 温度 | |
| 氧气质量分数 |
图9 上升段增压输运过程气液界面分布(左侧为三维图,右侧为ZY平面截面图)
Fig.9 The variation of interface at three dimensional (left) and ZY cross sections (right) in the ascent period of pressurized dischrage
| 1 | 林恩承, 王文, 匡以武, 等. 低温输运管道预冷过程的气液两相数值分析[J]. 化工学报, 2021, 72(S1): 153-160. |
| Lin E C, Wang W, Kuang Y W, et al. Numerical analysis of cryogenic two-phase precooling flow in a mini pipe[J]. CIESC Journal, 2021, 72(S1): 153-160. | |
| 2 | 汪彬, 李江道, 黄永华, 等. 节流参数对液氮贮箱热力排气系统运行特性的影响[J]. 化工学报, 2019, 70(S2): 101-107. |
| Wang B, Li J D, Huang Y H, et al. Effect of throttle parameters on operating performance of thermodynamic vent system in liquid nitrogen tank[J]. CIESC Journal, 2019, 70(S2): 101-107. | |
| 3 | Wang L, Ye S X, Ma Y, et al. CFD investigation on helium pressurization behaviors in liquid hydrogen tank[J]. Int. J. Hydrogen Energ., 2017, 42(52): 30792-30803. |
| 4 | 肖明堃, 杨光, 黄永华, 等. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
| Xiao M K, Yang G, Huang Y H, et al. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice[J]. CIESC Journal, 2023, 74(S1): 87-95. | |
| 5 | Chintalapati S, Kirk D. Parametric study of a propellant tank slosh baffle[C]//44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Hartford, CT. Reston, Virigina: AIAA, 2008: AIAA2008-4750. |
| 6 | Ohashi A, Furuichi Y, Haba D, et al. Experimental and numerical investigation on pressure change in cryogenic sloshing with a ring baffle[C]//53rd AIAA/SAE/ASEE Joint Propulsion Conference. Atlanta, GA. Reston, Virginia: AIAA, 2017: AIAA2017-4760. |
| 7 | Stewart M. Pressurization of a flightweight, liquid hydrogen tank: evaporation & condensation at the liquid/vapor interface[C]//53rd AIAA/SAE/ASEE Joint Propulsion Conference. Atlanta, GA. Reston, Virginia: AIAA, 2017: AIAA2017-4916. |
| 8 | Sato Y, Imai R, Nakata D, et al. Study on propellant supply system for small-scale supersonic flight experiment vehicle (development of design technology for LOX supply system)[J]. Int. J. of Microgravity Sci. Appl., 2020, 37(1): 370104 |
| 9 | Wang L, Yan T, Wang J J, et al. CFD investigation on thermodynamic characteristics in liquid hydrogen tank during successive varied-gravity conditions[J]. Cryogenics, 2019, 103: 102973. |
| 10 | Wang L, Li Y Z, Zhao Z X, et al. Transient thermal and pressurization performance of LO2 tank during helium pressurization combined with outside aerodynamic heating[J]. Int. J. Heat Mass Tran., 2013, 62: 263-271. |
| 11 | Liu Z, Yin X, Liu Y L, et al. Investigation on thermal behavior during pressurization discharge of liquid oxygen under different acceleration levels[J]. Microgravity Sci. Tec., 2022, 34(3): 27. |
| 12 | Liu Z, Feng Y Y, Lei G, et al. Fluid thermal stratification in a non-isothermal liquid hydrogen tank under sloshing excitation[J]. Int. J. Hydrogen Energ., 2018, 43(50): 22622-22635. |
| 13 | Guo S Y, Xiao M K, Xie F, et al. Optimization of helium consumption for feedback pressurization in liquid oxygen tanks[J]. Int. J. Heat Mass Tran., 2024, 230: 125739. |
| 14 | Konopka M, Noeding P, Klatte J, et al. Analysis of LN2 filling, draining, stratification and sloshing experiments[C]//46th AIAA Fluid Dynamics Conference. Washington, D.C. Reston, Virginia: AIAA, 2016: AIAA2016-4272. |
| 15 | Himeno T, Ohashi A, Anii K, et al. Investigation on phase change and pressure drop enhanced by violent sloshing of cryogenic fluid[C]//2018 Joint Propulsion Conference. Cincinnati, Ohio. Reston, Virginia: AIAA, 2018: AIAA2018-4755. |
| 16 | Sippel M, Stappert S, Callsen S, et al. A viable and sustainable European path into space-for cargo and astronauts[C]//72nd International Astronautical Congress. Dubai, United Arab Emirates: IAC, 2021: IAC21-D2.4.4. |
| 17 | Behruzi P, Klatte J, Fries N, et al. Cryogenic propellant management sounding rocket experiments on TEXUS 48[C]//49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. San Jose, CA. Reston, Virginia: AIAA, 2013: AIAA2013-3904. |
| 18 | Manning R E, Ballinger I, Bhatia M, et al. Design of the Europa clipper propellant management device[C]//AIAA Propulsion and Energy 2019 Forum. Indianapolis, IN. Reston, Virginia: AIAA, 2019: AIAA2019-3858. |
| 19 | Zuo Z Q, Jiang W B, Huang Y H. Effect of baffles on pressurization and thermal stratification in cryogenic tanks under micro-gravity[J]. Cryogenics, 2018, 96: 116-124. |
| 20 | Gaulke D, Dreyer M E. CFD simulation of capillary transport of liquid between parallel perforated plates using Flow3D[J]. Microgravity Sci. Tec., 2015, 27(4): 261-271. |
| 21 | Hartwig J, Esser N, Jain S, et al. CFD modeling of bidirectional PMDs inside cryogenic propellant tanks onboard parabolic flights[J]. J. Spacecraft Rockets, 2024, 61(1): 296-312. |
| 22 | Hartwig J W. Liquid Acquisition Devices for Advanced in-Space Cryogenic Propulsion Systems[M]. New York: Academic Press, 2016. |
| 23 | Li J C, Liang G Z, Zhu P P, et al. Numerical investigation of the operating process of the liquid hydrogen tank under gaseous hydrogen pressurization[J]. Aerosp Science And Technology, 2019, 93: 105327. |
| 24 | Taylor A H, Cerro J A, Jackson L R. Analytical study of reusable flight-weight cryogenic propellant tank design[J]. J. Spacecraft Rockets, 1986, 23(2): 149-157. |
| 25 | Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension[J]. J. Comput. Phys., 1992, 100(2): 335-354. |
| 26 | Li J C, Liang G Z. Simulation of mass and heat transfer in liquid hydrogen tanks during pressurizing[J]. Chinese Journal of Aeronautics, 2019, 32(9): 2068-2084. |
| 27 | Liu Z, Li Y Z, Jin Y H. Pressurization performance and temperature stratification in cryogenic final stage propellant tank[J]. Appl. Therm Eng., 2016, 106: 211-220. |
| 28 | Roudebush W.H., An analysis of the problem of tank pressurization during outflow[R]. Cleveland: Lewis Research Center, 1965: 6-11. |
| 29 | Yoon S H, Park K J. Effect of baffles on sloshing mitigation in liquid storage tanks[C]//Advanced Science and Technology Letters. Science & Engineering Research Support soCiety, 2015: 1-5. |
| 30 | Tanner P, Gorman J, Sparrow E. Flow-pressure drop characteristics of perforated plates[J]. Int. J. Numer. Method H., 2019, 29(11): 4310-4333. |
| [1] | 苏伟, 赵大海, 金旭, 刘忠彦, 李静, 张小松. 吸湿液滴与混合润湿性表面协同抑霜特性研究[J]. 化工学报, 2025, 76(S1): 140-151. |
| [2] | 臧子晴, 李修真, 谈莹莹, 刘晓庆. 分凝器对两级分离自复叠制冷循环特性影响研究[J]. 化工学报, 2025, 76(S1): 17-25. |
| [3] | 郭纪超, 徐肖肖, 孙云龙. 基于植物工厂中的CO2浓度气流模拟及优化研究[J]. 化工学报, 2025, 76(S1): 237-245. |
| [4] | 孙九春, 桑运龙, 王海涛, 贾浩, 朱艳. 泥水盾构仓体内射流对泥浆输送特性影响研究[J]. 化工学报, 2025, 76(S1): 246-257. |
| [5] | 李银龙, 刘国强, 晏刚. 分馏与闪蒸分离耦合自复叠制冷循环性能分析[J]. 化工学报, 2025, 76(S1): 26-35. |
| [6] | 吴梓航, 徐震原, 游锦方, 潘权稳, 王如竹. 基于吸附式储冷技术的深井钻探设备冷却系统[J]. 化工学报, 2025, 76(S1): 309-317. |
| [7] | 朱腾飞, 刘晔. 低GWP制冷剂在新能源汽车空调应用性能分析[J]. 化工学报, 2025, 76(S1): 343-350. |
| [8] | 吴迪, 胡斌, 姜佳彤. R1233zd(E)高温热泵实验研究与应用分析[J]. 化工学报, 2025, 76(S1): 377-383. |
| [9] | 张圣美, 李明, 张莹, 易茜, 杨依婷, 刘雅莉. 乳化剂和温度对相变微胶囊性能的影响分析[J]. 化工学报, 2025, 76(S1): 444-452. |
| [10] | 段浩磊, 陈浩远, 梁坤峰, 王林, 陈彬, 曹勇, 张晨光, 李硕鹏, 朱登宇, 何亚茹, 杨大鹏. 纯电动车热管理系统低GWP工质替代方案性能分析与综合评价[J]. 化工学报, 2025, 76(S1): 54-61. |
| [11] | 陈建兵, 常昊, 高明, 邢兵, 张磊, 刘奇磊. 基于反应模板与分子动力学的胺基相变吸收剂分相预测方法[J]. 化工学报, 2025, 76(5): 2387-2396. |
| [12] | 牛宏斌, 邱丽, 杨景轩, 张忠林, 郝晓刚, 赵忠凯, 阿布里提, 官国清. 筒体直径对旋风分离器性能的影响及其流场机制[J]. 化工学报, 2025, 76(5): 2367-2376. |
| [13] | 安昊天, 韩章烨, 陆慕瑶, 周阿武, 李建荣. 推进MOF产业化应用:宏量制备与成型[J]. 化工学报, 2025, 76(5): 2011-2025. |
| [14] | 张赵雪, 李正宇, 崔文慧, 王倩, 王志平, 龚领会. 基于液氖液氮梯级蓄冷的液氢储能中冷能回收利用研究[J]. 化工学报, 2025, 76(4): 1731-1741. |
| [15] | 刘淑丽, 周文豪, 张少良, 沈永亮. 太阳能直接吸收相变集-蓄热器的放热特性研究[J]. 化工学报, 2025, 76(4): 1722-1730. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号