| [1] |
Eikelboom D H. Process Control of Activated Sludge Plants by Microscopic Investigation[M]. London, UK: IWA Publishing, 2000: 127-143
|
| [2] |
Martins A M P, Pagilla K, Heijnen J J, van Loosdrecht M C M. Filamentous bulking sludge-a critical review[J]. Water Research, 2004, 38(4): 793-817
|
| [3] |
Zhang Zijie (张自杰). Wastewater Engineering[M]. 2nd ed. Beijing: China Construction Industry Press, 2000: 101-105
|
| [4] |
Peng Y, Gao C, Wang S, Ozaki M, Takigawa A. Non-filamentous sludge bulking caused by a deficiency of nitrogen in industrial wastewater treatment[J]. Water Science and Technology, 2003, 47(11): 289-295
|
| [5] |
Kenny R. Nutrient optimization for pulp and paper wastewater treatment plants-an opportunity for major cost savings[J]. Pulp & Paper-Canada, 2010, 111(2): 20-24
|
| [6] |
Chen Ying (陈滢), Peng Yongzhen (彭永臻), Liu Min (刘敏), Wang Shuying (王淑莹), Liang Xiurong (梁秀荣), Gao Chundi (高春娣). Effect of nutrient on sludge settling property and bulking controls[J]. Environmental Science (环境科学), 2004(6): 54-58
|
| [7] |
Yang Xiong (杨雄),Huo Mingxin (霍明昕), Wang Shuying (王淑莹), Guo Jianhua (郭建华), Wang Zhongwei (王中玮), Peng Yongzhen (彭永臻),Zhang Leilei (张蕾蕾). Effects of carbon sources on sludge settleability and microbial community structure[J]. CIESC Journal (化工学报), 2011, 62(12): 3471-3477
|
| [8] |
Oehmen A, Keller-Lehmann B, Zeng R J, Yuan Z G, Keller E. Optimisation of poly-beta-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems[J]. Journal of Chromatography A, 2005, 1070(1/2): 131-136
|
| [9] |
APHA. Standard Methods for the Examination of Water and Wastewater[M]. 20th ed.Washington DC,USA: American Water Works Association and Water Environment Federation, 1998: 233-245
|
| [10] |
Liu H, Fang H H P. Extraction of extracellular polymeric substances (EPS) of sludges[J]. Journal of Biotechnology, 2002, 95(3): 249-256
|
| [11] |
Loy A, Maixner F, Wagner M, Horn M. probeBase-an online resource for rRNA-targeted oligonucleotide probes: new features 2007[J]. Nucleic Acids Research, 2007, 35: D800-D804
|
| [12] |
Lou I C, de los Reyes F L. Clarifying the roles of kinetics and diffusion in activated sludge filamentous bulking[J]. Biotechnology and Bioengineering, 2008, 101(2): 327-336
|
| [13] |
Schuler A J, Jenkins D, Ronen P. Microbial storage products, biomass density, and settling properties of enhanced biological phosphorus removal activated sludge[J]. Water Science and Technology, 2001, 43(1): 173-180
|
| [14] |
Arun V, Mino T, Matsuo T. Biological mechanism of acetate uptake mediated by carbohydrate consumption in excess phosphorus removal systems[J]. Water Research, 1988, 22(5): 565-570
|
| [15] |
Pereira H, Lemos P C, Reis M A M, Crespo J P S G, Carrondo M J T, Santos H. Model for carbon metabolism in biological phosphorus removal processes based on in vivo 13C NMR labelling experiments[J]. Water Research, 1996, 30(9): 2128-2138
|
| [16] |
Wen Q X, Chen Z Q, Tian T, Chen W. Effects of phosphorus and nitrogen limitation on PHA production in activated sludge[J]. Journal of Environmental Sciences-China, 2010, 22(10): 1602-1607
|
| [17] |
Peng G, Ye F X, Li Y. Investigation of extracellular polymer substances (EPS) and physicochemical properties of activated sludge from different municipal and industrial wastewater treatment plants[J]. Environmental Technology, 2012, 33(8): 857-862
|
| [18] |
Martinez F, Lema J, Mendez R, Cuervo-Lopez F, Gomez J. Role of exopolymeric protein on the settleability of nitrifying sludges[J]. Bioresource Technology, 2004, 94(1): 43-48
|
| [19] |
Ehlers G A C, Wagachchi D,Turner S J. Nutrient conditions and reactor configuration influence floc size distribution and settling properties[J]. Water Science and Technology, 2012, 65(1): 156-163
|
| [20] |
Sponza D T. Extracellular polymer substances and physicochemical properties of flocs in steady-and unsteady-state activated sludge systems[J]. Process Biochemistry, 2002, 37(9): 983-998
|
| [21] |
Liao B Q, Allen D G, Droppo I G, Leppard G G, Liss S N. Surface properties of sludge and their role in bioflocculation and settleability[J]. Water Research, 2001, 35(2): 339-350
|
| [22] |
Shin H S, Kang S T, Nam S Y. Effect of carbohydrate and protein in the EPS on sludge settling characteristics[J]. Water Science and Technology, 2001, 43(6): 193-196
|
| [23] |
Urbain V, Block J C, Manem J. Bioflocculation in activated-sludge-an analytic approch[J]. Water Research, 1993, 27(5): 829-838
|
| [24] |
Cenens C, Smets I Y, Van Impe J F. Modeling the competition between floc-forming and filamentous bacteria in activated sludge waste water treatment systems(Ⅱ): A prototype mathematical model based on kinetic selection and filamentous backbone theory[J]. Water Research, 2000, 34(9): 2535-2541
|
| [25] |
Noutsopoulos C, Mamais D, Andreadakis A. A hypothesis on Microthrix parvicella proliferation in biological nutrient removal activated sludge systems with selector tanks[J]. FEMS Microbiology Ecology, 2012, 80(2): 380-389
|
| [26] |
Jenkins D, Richard M G,Daigger G T. Manual on the Causes and Control of Activated Sludge Bulking, Foaming, and Other Solids Separation Problems[M]. 3rd ed. London, UK: IWA Publishing, 2000: 23-45
|