化工学报 ›› 2022, Vol. 73 ›› Issue (4): 1515-1522.doi: 10.11949/0438-1157.20211614

• 流体力学与传递现象 • 上一篇    下一篇

羧甲基葡聚糖的快速沉降法阻垢特性研究

张浩(),赵宇(),徐志明,李晋辉   

  1. 东北电力大学能源与动力工程学院,吉林省 吉林市 132012
  • 收稿日期:2021-11-12 修回日期:2022-02-15 出版日期:2022-04-05 发布日期:2022-04-25
  • 通讯作者: 赵宇 E-mail:zhanghao866@yeah.net;zhaoyu727@yeah.net
  • 作者简介:张浩(1997—),男,博士研究生,zhanghao866@yeah.net
  • 基金资助:
    国家自然科学基金项目(51976028)

Study on scale inhibition characteristics of carboxymethyl dextran by fast controlled precipitation method

Hao ZHANG(),Yu ZHAO(),Zhiming XU,Jinhui LI   

  1. College of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin, China
  • Received:2021-11-12 Revised:2022-02-15 Published:2022-04-05 Online:2022-04-25
  • Contact: Yu ZHAO E-mail:zhanghao866@yeah.net;zhaoyu727@yeah.net

摘要:

工业循环冷却水中的碳酸钙污垢一直是困扰工业生产者的重要问题,使用快速沉降法(FCP)研究了不同浓度的羧甲基葡聚糖对于碳酸钙污垢的抑制作用。控制溶液中的钙离子浓度为200 mg/L,羧甲基葡聚糖的浓度分别为0.5、1、2和4 mg/L时,对羧甲基葡聚糖的阻垢性能进行分析。结果表明,羧甲基葡聚糖对于减缓碳酸钙的成核过程有明显效果,此外,它也显著降低了碳酸钙成核后晶体的生长速率。当羧甲基葡聚糖的浓度为4 mg/L时,羧甲基葡聚糖对于碳酸钙的成核及晶面生长起到了完全抑制的作用,对于工业应用中碳酸钙的防垢处理,提升换热效率具有借鉴意义。

关键词: 羧甲基葡聚糖, 结垢, 碳酸钙, 快速沉降法, 传热, 吸附

Abstract:

Calcium carbonate fouling in industrial circulating cooling water is always an important problem for industrial producers. Fouling on the heat transfer surface increases the fouling resistance of heat exchanger and reduces the heat transfer efficiency of heat exchanger. Adding scale inhibitor to circulating cooling water is an effective method to control the fouling of heat exchanger. The inhibition of calcium carbonate fouling by carboxymethyl dextran of different concentrations was studied by fast controlled precipitation(FCP) method. The FCP method is a general method for evaluating scale inhibitors, which is very suitable for the research and control of scale inhibition treatment in heat exchanger. At present, the FCP method is widely used in the evaluation of water quality resources and the measurement of scale inhibition effect of scale inhibitors. By measuring the real-time pH and resistivity in the solution, the fast controlled precipitation method can reflect the inhibition effect of scale inhibitor in the nucleation and growth process of calcium carbonate. The concentration of Ca2+ in the solution was 200 mg/L, and the concentration of carboxymethyl dextran was 0.5, 1, 2 and 4 mg/L, respectively. The results show that carboxymethyl dextran has a significant effect on slowing down the nucleation process of calcium carbonate. In addition, it also significantly reduces the growth rate of crystals after calcium carbonate nucleation. When the concentration of Ca2+ was 200 mg/L, 4 mg/L carboxymethyl dextran could inhibit the nucleation and crystal growth of CaCO3. It is of great significance to the anti-scaling of calcium carbonate and the improvement of heat transfer efficiency in industrial application.

Key words: carboxymethyl dextran, scaling, calcium carbonate, fast controlled precipitation, heat transfer, adsorption

中图分类号: 

  • TK 124

图1

碳酸氢钙溶液制备示意图"

图2

快速沉降法实验装置示意图"

图3

无阻垢剂添加时pH随时间变化曲线"

图4

添加羧甲基葡聚糖前后实验溶液pH与时间的关系"

图5

不同浓度的羧甲基葡聚糖对应的pH最高点与时间的关系"

表1

不同浓度羧甲基葡聚糖对溶液pH及电阻率的影响"

C/( mg/L)pH电阻率/(kΩ·cm)
06.53100.12
0.56.5100.24
16.48100.3
26.52100.36
46.51100.48

图6

添加羧甲基葡聚糖前后实验溶液电阻率与时间的关系"

表2

pH及电阻率曲线显示的成核结束的时间点"

C/(mg/L)时间点/min
pH电阻率
04846
0.55960
16566
28789
4

图7

pH及电阻率曲线对应的成核结束时间"

图8

不同阻垢剂浓度的电阻率曲线与时间轴围成的面积"

图9

不同浓度阻垢剂对应的阻垢效率"

表3

羧甲基葡聚糖的阻垢效率"

羧甲基葡聚糖的浓度

C/(mg/L)

pH最大值

pHmax

pHmax对应的

时间/min

阻垢效率

EFCP/%

07.8148
0.57.975953.09
18.066593.93
28.238798.47
4100

图10

均匀沉淀6 min后加入羧甲基葡聚糖溶液的电阻率变化"

1 Awais M, Bhuiyan A A. Recent advancements in impedance of fouling resistance and particulate depositions in heat exchangers[J]. International Journal of Heat and Mass Transfer, 2019, 141: 580-603.
2 Xu Z M, Zhao Y, He J J, et al. Fouling characterization of calcium carbonate on heat transfer surfaces with sodium carboxymethyl cellulose as an inhibitor[J]. International Journal of Thermal Sciences, 2021, 162: 106790.
3 Wang L C, Li S F, Wang L B, et al. Relationships between the characteristics of CaCO3 fouling and the flow velocity in smooth tube[J]. Experimental Thermal and Fluid Science, 2016, 74: 143-159.
4 Zhao Y, Xu Z M, Wang B B, et al. Scale inhibition performance of sodium carboxymethyl cellulose on heat transfer surface at various temperatures: experiments and molecular dynamics simulation[J]. International Journal of Heat and Mass Transfer, 2019, 141: 457-463.
5 Chaussemier M, Pourmohtasham E, Gelus D, et al. State of art of natural inhibitors of calcium carbonate scaling. A review article[J]. Desalination, 2015, 356: 47-55.
6 Kazi S N, Teng K H, Zakaria M S, et al. Study of mineral fouling mitigation on heat exchanger surface[J]. Desalination, 2015, 367: 248-254.
7 Xu Z M, Zhao Y, Wang J T, et al. Inhibition of calcium carbonate fouling on heat transfer surface using sodium carboxymethyl cellulose[J]. Applied Thermal Engineering, 2019, 148: 1074-1080.
8 Kokilaramani S, Al-Ansari M M, Rajasekar A, et al. Microbial influenced corrosion of processing industry by re-circulating waste water and its control measures — a review[J]. Chemosphere, 2021, 265: 129075.
9 Jafar Mazumder M A. A review of green scale inhibitors: process, types, mechanism and properties[J]. Coatings, 2020, 10(10): 928.
10 Zhang G C, Ge J J, Sun M Q, et al. Investigation of scale inhibition mechanisms based on the effect of scale inhibitor on calcium carbonate crystal forms[J]. Science in China Series B: Chemistry, 2007, 50(1): 114-120.
11 张盼盼, 蒋利辉, 孙军萍, 等. 工业循环冷却水用阻垢缓蚀剂的研究进展[J]. 化学研究, 2018, 29(6): 642-646.
Zhang P P, Jiang L H, Sun J P, et al. Research progress of scale and corrosion inhibitor for industrial re-circulating cooling water[J]. Chemical Research, 2018, 29(6): 642-646.
12 Zhou Y S, Wang J, Fang Y. Green and high effective scale inhibitor based on ring-opening graft modification of polyaspartic acid[J]. Catalysts, 2021, 11(7): 802.
13 Boumagoura M, Ghizellaoui S, Rhouati S, et al. Calcium carbonate scaling prevention by a green chemical inhibitor, gallic acid[J]. Water and Environment Journal, 2021, 35(3): 998-1006.
14 Geng X, Sosa R D, Reynolds M A, et al. Alginate as a green inhibitor of barite nucleation and crystal growth[J]. Molecular Systems Design & Engineering, 2021, 6(7): 508-519.
15 张巧玲, 赖川. 阻垢剂作用机理研究进展[J]. 四川文理学院学报, 2020, 30(2): 18-23.
Zhang Q L, Lai C. Research progress on the mechanism of scale inhibitors[J]. Sichuan University of Arts and Science Journal, 2020, 30(2): 18-23.
16 任大军, 庄梦娟, 张淑琴, 等. 绿色阻垢剂研究进展[J]. 工业水处理, 2021, 41(12): 41-45.
Ren D J, Zhuang M J, Zhang S Q, et al. Research progress of green scale inhibitor[J]. Industrial Water Treatment, 2021, 41(12): 41-45.
17 周瑜, 王芳斌, 刘又年, 等. 羧甲基葡聚糖磁性纳米微球的制备及表征[J]. 化学研究, 2009, 20(2): 5-8.
Zhou Y, Wang F B, Liu Y N, et al. Preparation and characterization of carboxymethyldextran-modified magnetic nanoparticles[J]. Chemical Research, 2009, 20(2): 5-8.
18 Chahardahcherik M, Ashrafi M, Ghasemi Y, et al. Effect of chemical modification with carboxymethyl dextran on kinetic and structural properties of L-asparaginase[J]. Analytical Biochemistry, 2020, 591: 113537.
19 杨文鸽, 李花霞, 薛长湖, 等. 酵母葡聚糖的羧甲基化研究[J]. 食品与发酵工业, 2004, 30(11): 28-30.
Yang W G, Li H X, Xue C H, et al. Study on the carboxymethylation of glucan from yeast[J]. Food and Fermentation Industries, 2004, 30(11): 28-30.
20 孙翠玲, 杨文鸽, 李花霞, 等. 羧甲基葡聚糖体外抗肿瘤作用的研究[J]. 中国生化药物杂志, 2006, 26(3): 153-155.
Sun C L, Yang W G, Li H X, et al. The anti-cancer effect of carboxymethylglucan in vitro [J]. Chinese Journal of Biochemical Pharmaceutics, 2006, 26(3): 153-155.
21 Shin J M, Song S H, Rao N V, et al. A carboxymethyl dextran-based polymeric conjugate as the antigen carrier for cancer immunotherapy[J]. Biomaterials Research, 2018, 22: 21.
22 Verraest D L, Peters J A, Bekkum H, et al. Carboxymethyl inulin: a new inhibitor for calcium carbonate precipitation[J]. Journal of the American Oil Chemists' Society, 1996, 73(1): 55-62.
23 Nancollas G H, Kazmierczak T F, Schuttringer E. A controlled composition study of calcium carbonate crystal growth: the influence of scale inhibitors[J]. Corrosion, 1981, 37(2): 76-81.
24 陈华林, 冯忠琼, 张枝健, 等. EDTA滴定法测定钙离子浓度的影响因素与优化[J]. 西南民族大学学报(自然科学版), 2020, 46(6): 578-585.
Chen H L, Feng Z Q, Zhang Z J, et al. Influence factors and optimization on the EDTA titration of calcium[J]. Journal of Southwest Minzu University (Natural Science Edition), 2020, 46(6): 578-585.
25 Lédion J F B, Vienne J. Characterization of the scaling properties of water by fast controlled precipitation test[J]. Journal Europeen d'Hydrologie, 1997, 28(15): 15-35.
26 Gauthier G, Chao Y J, Horner O, et al. Application of the fast controlled precipitation method to assess the scale-forming ability of raw river waters[J]. Desalination, 2012, 299: 89-95.
27 Chao Y J, Horner O, Vallée P, et al. In situ probing calcium carbonate formation by combining fast controlled precipitation method and small-angle X-ray scattering[J]. Langmuir, 2014, 30(12): 3303-3309.
28 Hamdi R, Tlili M M. Conductometric study of calcium carbonate prenucleation stage: underlining the role of CaCO3 ion pairs[J]. Crystal Research and Technology, 2016, 51(1): 99-109.
29 Peronno D, Cheap-Charpentier H, Horner O, et al. Study of the inhibition effect of two polymers on calcium carbonate formation by fast controlled precipitation method and quartz crystal microbalance[J]. Journal of Water Process Engineering, 2015, 7: 11-20.
30 Horner O, Cheap-Charpentier H, Cachet X, et al. Antiscalant properties of Herniaria glabra aqueous solution[J]. Desalination, 2017, 409: 157-162.
[1] 黄陆月, 刘畅, 许勇毅, 邢浩若, 王峰, 马双忱. CDI二维浓度传质模型的建立以及实验验证[J]. 化工学报, 2022, 73(7): 2933-2943.
[2] 朱江伟, 马鹏飞, 杜晓, 杨言言, 郝晓刚, 罗善霞. 基于可变价NiFe-LDH/rGO对磷酸根离子的特异性电控分离[J]. 化工学报, 2022, 73(7): 3057-3067.
[3] 赵继昊, 唐伟强, 徐小飞, 赵双良, 贺炅皓. 高分子复合材料中键合剂在不同纳米填料表面的吸附能计算[J]. 化工学报, 2022, 73(7): 3174-3181.
[4] 蔡楚玥, 方晓明, 张正国, 凌子夜. CNTs阵列增强石蜡/硅橡胶复合相变垫片的散热性能研究[J]. 化工学报, 2022, 73(7): 2874-2884.
[5] 罗佳, 吴双应, 肖兰, 周世耀, 陈志莉. 撞击速度对连续液滴撞击热圆柱壁面局部传热特性影响的实验[J]. 化工学报, 2022, 73(7): 2944-2951.
[6] 董彬, 薛永浩, 梁坤峰, 袁争印, 王林, 周训. 相变微胶囊悬浮液喷淋换热特性实验研究[J]. 化工学报, 2022, 73(7): 2971-2981.
[7] 黄丽菁, 黄继娇, 李鹏辉, 刘芷诺, 蒋康杰, 吴文娟. 木质素羟丙基磺甲基化改性及其对纤维素酶水解的影响[J]. 化工学报, 2022, 73(7): 3232-3239.
[8] 魏琳, 郭剑, 廖梓豪, Dafalla Ahmed Mohmed, 蒋方明. 空气流量对空冷燃料电池电堆性能的影响研究[J]. 化工学报, 2022, 73(7): 3222-3231.
[9] 李丽媛, 王建强, 陈奕, 郭友娣, 周健, 刘志成, 王仰东, 谢在库. 甲醇制丙烯反应中ZSM-5分子筛催化剂积炭失活介尺度机制研究[J]. 化工学报, 2022, 73(6): 2669-2676.
[10] 刘怡琳, 李钰, 余亚雄, 黄哲庆, 周强. 基于重置温度方法的双参数介尺度气固传热模型构建[J]. 化工学报, 2022, 73(6): 2612-2621.
[11] 季超, 刘炜, 漆虹. 基于空冷的疏水陶瓷膜冷凝器用于烟气脱湿过程强化的实验研究[J]. 化工学报, 2022, 73(5): 2174-2182.
[12] 黄其, 章晓敏, 宓霄凌, 周楷, 钟英杰. 三角槽道低 Reynolds 数脉动流与柔性壁耦合特性研究[J]. 化工学报, 2022, 73(5): 1964-1973.
[13] 张宇伦, 陈长坤, 雷鹏. 不同可燃液体层高度下浸润多孔介质砂床组合燃烧特性实验研究[J]. 化工学报, 2022, 73(4): 1826-1833.
[14] 刘碧强, 曹海山. 基于流量校准的吸附测量方法及误差分析[J]. 化工学报, 2022, 73(4): 1597-1605.
[15] 李俊, 黎仕华, 孙志高, 宋士博. 超声对无沸腾区浸液式喷雾冷却的影响研究[J]. 化工学报, 2022, 73(4): 1566-1574.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!