化工学报 ›› 2021, Vol. 72 ›› Issue (1): 229-246.DOI: 10.11949/0438-1157.20201090
收稿日期:
2020-08-03
修回日期:
2020-10-23
出版日期:
2021-01-05
发布日期:
2021-01-05
通讯作者:
陈小强
作者简介:
江龙(1989—),男,博士研究生,基金资助:
JIANG Long(),WANG Kaijie,KONG Qing,LU Sheng,CHEN Xiaoqiang()
Received:
2020-08-03
Revised:
2020-10-23
Online:
2021-01-05
Published:
2021-01-05
Contact:
CHEN Xiaoqiang
摘要:
化学发光是利用自身化学反应释放的能量代替光能激发产生光学信号,具有低背景、无自体荧光干扰、灵敏度高等优点。近几年来,化学发光成像技术,尤其是二氧杂环丁烷类化学发光探针在生物学成像领域得到了快速发展。辉光型的金刚烷-二氧杂环丁烷类化学发光被应用于离子检测(氟离子)、生物活性物种(活性氧、活性硫)、生物标志酶(β-半乳糖苷酶、硝基还原酶、组织蛋白酶B等)的特异性识别以及该类化学发光材料的开发。本文总结了近几年金刚烷-二氧杂环丁烷类化学发光在上述四个方面的研究进展,并对该领域的研究方向进行了展望。
中图分类号:
江龙, 王开杰, 孔晴, 陆晟, 陈小强. 基于金刚烷-二氧杂环丁烷化学发光探针的研究进展[J]. 化工学报, 2021, 72(1): 229-246.
JIANG Long, WANG Kaijie, KONG Qing, LU Sheng, CHEN Xiaoqiang. Research progress of chemiluminescence probes based on adamantane-dioxetane[J]. CIESC Journal, 2021, 72(1): 229-246.
图6 探针8化学发光机理(a)及探针9细胞渗透共聚焦荧光成像与检测1O2的细胞成像图(b)[44]
Fig.6 Chemiluminescence mechanism of probe 8 (a) and cell permeability confocal fluorescence imaging and cell imaging for detection of 1O2 of probe 9(b)
1 | White E H, Bursey M M. Chemiluminescence of luminol and related hydrazides: the light emission step [J]. Journal of The American Chemical Society, 1964, 86(5): 941-942. |
2 | Kamidate T, Kinkou T, Watanabe H. Role of amino thiols in luminol chemiluminescence coupled with copper(Ⅱ)-catalysed oxidation of cysteine and glutathione [J]. Journal of Bioluminescence and Chemiluminescence, 1996, 11(3): 123-129. |
3 | Li H, Du J X. Sensitive chemiluminescence determination of three thiol compounds based on Cu(Ⅱ)-catalyzing luminol reaction in the absence of an oxidant [J]. Analytical Letters, 2009, 42(13): 2131-2140. |
4 | King R, Miskelly G M. The inhibition by amines and amino acids of bleach-induced luminol chemiluminescence during forensic screening for blood [J]. Talanta, 2005, 67(2): 345-353. |
5 | Du J X, Li Y H, Lu J R. Investigation on the chemiluminescence reaction of luminol-H2O2-S2-/R-SH system [J]. Analytica Chimica Acta, 2001, 448(1/2): 79-83. |
6 | Kalkar C D, Raut V M, Gaikwad V B. Lyoluminescence of luminol in aqueous amines [J]. Journal of Radioanalytical and Nuclear Chemistry, 1994, 177(2): 345-355. |
7 | Dong Y P, Wang J, Peng Y, et al. Chemiluminescence resonance energy transfer between CdS quantum dots and lucigenin and its sensing application [J]. Journal of Luminescence, 2017, 181: 433-438. |
8 | Gao W Y, Qi L M, Liu Z Y, et al. Efficient lucigenin/thiourea dioxide chemiluminescence system and its application for selective and sensitive dopamine detection [J]. Sensors and Actuators B: Chemical, 2017, 238: 468-472. |
9 | Hart R C, Taaffe L R. The use of acridinium ester-labelled streptavidin in immunoassays [J]. Journal of Immunological Methods, 1987, 101(1): 91-96. |
10 | Peng K, Liu S S, Lv F T, et al. Wireless charging electrochemiluminescence system for ionic channel manipulation in living cells [J]. ACS Applied Materials & Interfaces, 2020, 12(22): 24655-24661. |
11 | Guardigli M, Pasini P, Mirasoli M, et al. Chemiluminescent high-throughput microassay for evaluation of acetylcholinesterase inhibitors [J]. Analytica Chimica Acta, 2005, 535(1/2): 139-144. |
12 | Zargoosh K, Chaichi M J, Asghari S, et al. Study of chemiluminescence from reaction of bis(2,4,6-trichlorophenyl)oxalate,hydrogen peroxide and diethyl-2-(cyclohexylamino)-5-[(e)-2-phenyl-1-ethenyl]-3,4-furandi arboxylate as a novel fluorescer [J]. Journal of the Iranian Chemical Society, 2010, 7(2): 376-383. |
13 | Cui H, Zhang Z F, Shi M J, et al. Light emission of gold nanoparticles induced by the reaction of bis(2,4,6-trichlorophenyl) oxalate and hydrogen peroxide [J]. Analytical Chemistry, 2005, 77(19): 6402-6406. |
14 | Smellie I A, Aldred J K, Bower B, et al. Alternative hydrogen peroxide sources for peroxyoxalate “glowstick” chemiluminescence demonstrations [J]. Journal of Chemical Education, 2016, 94(1): 112-114. |
15 | Nakano K, Honda T, Yamasaki K, et al. Carbon quantum dots as fluorescent component in peroxyoxalate chemiluminescence for hydrogen peroxide determination [J]. Bulletin of the Chemical Society of Japan, 2018, 91(7): 1128-1130. |
16 | Tsaplev Y B. Chemiluminescence determination of hydrogen peroxide [J]. Journal of Analytical Chemistry, 2012, 67(6): 506-514. |
17 | Samadi-Maybodi A, Akhoondi R, Chaichi M J. Studies of new peroxyoxalate-H2O2 chemiluminescence system using quinoxaline derivatives as green fluorophores [J]. Journal of Fluorescence, 2010, 20(3): 671-679. |
18 | Nozaki O, Iwaeda T, Kato V. Amines for detection of dopamine by generation of hydrogen peroxide and peroxyoxalate chemiluminescence [J]. Journal of Bioluminescence and Chemiluminescence, 1996, 11(6): 309-313. |
19 | Zong C, Wu J, Zang Y, et al. Resonance energy transfer and electron-hole annihilation induced chemiluminescence of quantum dots for amplified immunoassay [J]. Chemical Communications, 2018, 54(84): 11861-11864. |
20 | Yang Y L, Wang S F, Liu L F, et al. NIR-Ⅱ chemiluminescence molecular sensor for in-vivo high contrast inflammation imaging [J]. Angewandte Chemie International Edition, 2020, 59(42): 18380-18385. |
21 | Albrecht S, Brandl H, Bohm W D, et al. Determination of urinary oxalate and porphyrins by peroxyoxalate chemiluminescence [J]. Analytica Chimica Acta, 1991, 255(2): 413-416. |
22 | Schaap A P, Gagnon S D. Chemiluminescence from a phenoxide-substituted 1,2-dioxetane: a model for firefly bioluminescence [J]. Journal of the American Chemical Society, 1982, 104(12): 3504-3506. |
23 | Schaap A P, Sandison M D, Handley R S. Chemical and enzymatic triggering of 1,2-dioxetanes (3): Alkaline phosphatase-catalyzed chemiluminescence from an aryl phosphate-substituted dioxetane [J]. Tetrahedron Letters, 1987, 28(11): 1159-1162. |
24 | Schaap A P, Handley R S, Gin B P. Chemical and enzymatic triggering of 1,2-dioxetanes (1): Aryl esterase-catalyzed chemiluminescence from a naphthyl acetate-substituted dioxetane [J]. Tetrahedron Letters, 1987, 28(9): 935-938. |
25 | Schaap A P, Chen T S, Handley R S, et al. Chemical and enzymatic triggering of 1,2-dioxbtanbs (2): Fluoride-induced chemiluminescence from tert-butyldimethylsilyloxy-substituted dioxetanes [J]. Tetrahedron Letters, 1987, 28(11): 1155-1158. |
26 | Bronstein I, Edwards B, Voyta J C. 1,2-Dioxetanes: novel chemiluminescent enzyme substrates. Applications to immunoassays [J]. Journal of Bioluminescence and Chemiluminescence, 1989, 4(1): 99-111. |
27 | Schaap A P, Akhavan H, Romano L J. Chemiluminescent substrates for alkaline phosphatase: application to ultrasensitive enzyme-linked immunoassays and DNA probes [J]. Clinical Chemistry, 1989, 35(9): 1863-1864. |
28 | Hummelen J C, Luider T M, Wynberg H. Stable 1,2-dioxetanes as labels for thermochemiluminescent immunoassay[J]. Methods Enzymol., 1986, 133: 531-557. |
29 | Palmer C, Wolfe S H, Dietetic A. Position of the American dietetic association: the impact of fluoride on health[J]. Journal of the American Dietetic Association, 2005, 105(10): 1620-1628. |
30 | Kleerekoper M, Face M D. The role of fluoride in the prevention of osteoporosis[J]. Endocrinology and Metabolism Clinics of North America, 1998, 27(2): 441-452. |
31 | Smith G E. Fluoride, teeth and bone [J]. The Medical Journal of Australia, 1985, 143(7): 283-286. |
32 | Ayoob S, Gupta A K. Fluoride in drinking water: a review on the status and stress effects [J]. Critical Reviews in Environmental Science and Technology, 2006, 36(6): 433-487. |
33 | Upadhyay K K, Mishra R K, Kumar V, et al. A coumarin based ICT probe for fluoride in aqueous medium with its real application [J]. Talanta, 2010, 82(1): 312-318. |
34 | Turan I S, Akkaya E U. Chemiluminescence sensing of fluoride ions using a self-immolative amplifier [J]. Organic Letters, 2014, 16(6): 1680-1683. |
35 | Turan I S, Seven O, Ayan S, et al. Amplified chemiluminescence signal for sensing fluoride ions [J]. ACS Omega, 2017, 2(7): 3291-3295. |
36 | Gu B W, Dong C, Shen R W, et al. Dioxetane-based chemiluminescent probe for fluoride ion-sensing in aqueous solution and living imaging [J]. Sensors and Actuators B: Chemical, 2019, 301: 127111. |
37 | Ohshima H, Tatemichi M, Sawa T. Chemical basis of inflammation-induced carcinogenesis [J]. Archives of Biochemistry and Biophysics, 2003, 417(1): 3-11. |
38 | Okon I S, Zou M H. Mitochondrial ROS and cancer drug resistance: implications for therapy [J]. Pharmacological Research, 2015, 100: 170-174. |
39 | Fu J, Shao Y, Wang L, et al. Lysosome-controlled efficient ROS overproduction against cancer cells with a high pH-responsive catalytic nanosystem [J]. Nanoscale, 2015, 7(16): 7275-7283. |
40 | Voeikov V L, Vilenskaya N D, Ha D M, et al. The stable nonequilibrium state of bicarbonate aqueous systems [J]. Russian Journal of Physical Chemistry A, 2012, 86(9): 1407-1415. |
41 | Salamifar S E, Lai R Y. Use of combined scanning electrochemical and fluorescence microscopy for detection of reactive oxygen species in prostate cancer cells [J]. Analytical Chemistry, 2013, 85(20): 9417-9421. |
42 | Zielonka J, Zielonka M, Sikora A, et al. Global profiling of reactive oxygen and nitrogen species in biological systems: high-throughput real-time analyses [J]. Journal of Biological Chemistry, 2012, 287(5): 2984-2995. |
43 | Cao J, Lopez R, Thacker J M, et al. Chemiluminescent probes for imaging H2S in living animals [J]. Chemical Science, 2015, 6(3): 1979-1985. |
44 | Hananya N, Green O, Blau R, et al. A highly efficient chemiluminescence probe for the detection of singlet oxygen in living cells [J]. Angewandte Chemie International Edition, 2017, 56(39): 11793-11796. |
45 | Seven O, Sozmen F, Turan I S. Self immolative dioxetane based chemiluminescent probe for H2O2 detection [J]. Sensors and Actuators B: Chemical, 2017, 239: 1318-1324. |
46 | Ye S, Hu J J, Yang D. Tandem Payne/Dakin reaction: a new strategy for hydrogen peroxide detection and molecular imaging [J]. Angewandte Chemie International Edition, 2018, 57(32): 10173-10177. |
47 | Ye S, Hananya N, Green O, et al. A highly selective and sensitive chemiluminescent probe for real-time monitoring of hydrogen peroxide in cells and animals [J]. Angewandte Chemie International Edition, 2020, 59(34): 14326-14330. |
48 | Wijdeven R H, Neefjes J, Ovaa H. How chemistry supports cell biology: the chemical toolbox at your service [J]. Trends in Cell Biol., 2014, 24(12): 751-760. |
49 | Peng L, Gao M, Cai X L, et al. A fluorescent light-up probe based on AIE and ESIPT processes for beta-galactosidase activity detection and visualization in living cells [J]. Journal of Materials Chemistry B, 2015, 3(47): 9168-9172. |
50 | Xue C, Lei Y J, Zhang S C, et al. Cyanine-derived “turn-on” fluorescent probe for imaging nitroreductase in hypoxic tumor cells [J]. Analytical Methods, 2015, 7(24): 10125-10128. |
51 | Yuan J, Xu Y Q, Zhou N N, et al. A highly selective turn-on fluorescent probe based on semi-cyanine for the detection of nitroreductase and hypoxic tumor cell imaging [J]. RSC Advances, 2014, 4(99): 56207-56210. |
52 | Xu J, Sun S B, Li Q, et al. A rapid response “turn-on” fluorescent probe for nitroreductase detection and its application in hypoxic tumor cell imaging [J]. Analyst, 2015, 140(2): 574-581. |
53 | Ryu J H, Kim S A, Koo H, et al. Cathepsin B-sensitive nanoprobe for in vivo tumor diagnosis [J]. Journal of Materials Chemistry, 2011, 21(44): 17631-17634. |
54 | Gnaim S, Scomparin A, Das S, et al. Direct real-time monitoring of prodrug activation by chemiluminescence [J]. Angewandte Chemie International Edition, 2018, 57(29): 9033-9037. |
55 | Eilon-Shaffer T, Roth-Konforti M, Eldar-Boock A, et al. Ortho-chlorination of phenoxy 1,2-dioxetane yields superior chemiluminescent probes for in vitro and in vivo imaging [J]. Organic & Biomolecular Chemistry, 2018, 16(10): 1708-1712. |
56 | Gnaim S, Scomparin A, Eldar-Boock A, et al. Light emission enhancement by supramolecular complexation of chemiluminescence probes designed for bioimaging [J]. Chemical Science, 2019, 10(10): 2945-2955. |
57 | Cheng P H, Miao Q Q, Li J C, et al. Unimolecular chemo-fluoro-luminescent reporter for crosstalk-free duplex imaging of hepatotoxicity [J]. Journal of the American Chemical Society, 2019, 141(27): 10581-10584. |
58 | Das S, Ihssen J, Wick L, et al. Chemiluminescent carbapenem-based molecular probe for detection of carbapenemase activity in live bacteria [J]. Chemistry, 2020, 26(16): 3647-3652. |
59 | Sun J Y, Hu Z, Wang R H, et al. A highly sensitive chemiluminescent probe for detecting nitroreductase and imaging in living animals [J]. Analytical Chemistry, 2019, 91(2): 1384-1390. |
60 | Cao J, Campbell J, Liu L, et al. In vivo chemiluminescent imaging agents for nitroreductase and tissue oxygenation [J]. Analytical Chemistry, 2016, 88(9): 4995-5002. |
61 | Roth-Konforti M E, Bauer C R, Shabat D. Unprecedented sensitivity in a probe for monitoring cathepsin B: chemiluminescence microscopy cell-imaging of a natively expressed enzyme [J]. Angewandte Chemie International Edition, 2017, 56(49): 15633-15638. |
62 | Zhang Y T, Yan C X, Wang C, et al. A sequential dual-lock strategy for photoactivatable chemiluminescent probes enabling bright duplex optical imaging [J]. Angewandte Chemie International Edition, 2020, 59(23): 9059-9066. |
63 | Ni X, Zhang X Y, Duan X C, et al. Near-infrared afterglow luminescent aggregation-induced emission dots with ultrahigh tumor-to-liver signal ratio for promoted image-guided cancer surgery [J]. Nano Letters, 2019, 19(1): 318-330. |
64 | Roda A, Di Fusco M, Quintavalla A, et al. Dioxetane-doped silica nanoparticles as ultrasensitive reagentless thermochemiluminescent labels for bioanalytics [J]. Analytical Chemistry, 2012, 84(22): 9913-9919. |
65 | Andronico L A, Chen L, Mirasoli M, et al. Thermochemiluminescent semiconducting polymer dots as sensitive nanoprobes for reagentless immunoassay [J]. Nanoscale, 2018, 10(29): 14012-14021. |
66 | Chen Y, Sijbesma R P. Dioxetanes as mechanoluminescent probes in thermoplastic elastomers [J]. Macromolecules, 2014, 47(12): 3797-3805. |
67 | Miao Y G. Mechanism analysis on the increased stress softening of Mullins effect for rubber matrix composites [J]. Plastics, Rubber and Composites, 2019, 48(5): 226-233. |
68 | Varol H S, Rivastava A, Kumar S, et al. Bridging chains mediate nonlinear mechanics of polymer nanocomposites under cyclic deformation [J]. Polymer, 2020, 200: 122529-122538. |
69 | Fu W, Wang L, Huang J N, et al. Mechanical properties and Mullins effect in natural rubber reinforced by grafted carbon black [J]. Advances in Polymer Technology, 2019, 2019: 1-11. |
70 | Wan H X, Gao K, Li S, et al. Chemical bond scission and physical slippage in the Mullins effect and fatigue behavior of elastomers [J]. Macromolecules, 2019, 52(11): 4209-4221. |
71 | Zhong D M, Xiang Y H, Yin T H, et al. A physically-based damage model for soft elastomeric materials with anisotropic Mullins effect [J]. International Journal of Solids and Structures, 2019, 176/177: 121-134. |
72 | Li Z Y, Xu X L, Xia X X, et al. Energy dissipation accompanying Mullins effect of nitrile butadiene rubber/carbon black nanocomposites [J]. Polymer, 2019, 171: 106-114. |
73 | Clough J M, Creton C, Craig S L, et al. Covalent bond scission in the Mullins effect of a filled elastomer: real-time visualization with mechanoluminescence [J]. Advanced Functional Materials, 2016, 26(48): 9063-9074. |
74 | Cui D, Li J C, Zhao X H, et al. Semiconducting polymer nanoreporters for near-infrared chemiluminescence imaging of immunoactivation [J]. Advanced Materials, 2020, 32(6): 1906314-1906321. |
[1] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[2] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[3] | 朱兴驰, 郭志远, 纪志永, 汪婧, 张盼盼, 刘杰, 赵颖颖, 袁俊生. 选择性电渗析镁锂分离过程模拟优化[J]. 化工学报, 2023, 74(6): 2477-2485. |
[4] | 顾浩, 张福建, 刘珍, 周文轩, 张鹏, 张忠强. 力电耦合作用下多孔石墨烯膜时间维度的脱盐性能及机理研究[J]. 化工学报, 2023, 74(5): 2067-2074. |
[5] | 张正, 何永平, 孙海东, 张荣子, 孙正平, 陈金兰, 郑一璇, 杜晓, 郝晓刚. 蛇形流场电控离子交换装置用于选择性提锂[J]. 化工学报, 2023, 74(5): 2022-2033. |
[6] | 王子健, 柯明, 李佳涵, 李舒婷, 孙巾茹, 童燕兵, 赵治平, 刘加英, 任璐. 短b轴ZSM-5分子筛制备方法及应用研究进展[J]. 化工学报, 2023, 74(4): 1457-1473. |
[7] | 许万, 陈振斌, 张慧娟, 牛昉昉, 火婷, 刘兴盛. 线性温敏性聚合物嵌段调控的 |
[8] | 孙嘉辰, 裴春雷, 陈赛, 赵志坚, 何盛宝, 巩金龙. 化学链低碳烷烃氧化脱氢技术进展[J]. 化工学报, 2023, 74(1): 205-223. |
[9] | 余后川, 任腾, 张宁, 姜晓滨, 代岩, 张晓鹏, 鲍军江, 贺高红. 二维氧化石墨烯膜离子选择性传递调控的研究进展[J]. 化工学报, 2023, 74(1): 303-312. |
[10] | 唐茹意, 潘罕骞, 郑侠俊, 张广欣, 汪星平, 崔希利, 邢华斌. Z型全氟聚醚的结构表征[J]. 化工学报, 2023, 74(1): 479-486. |
[11] | 李沐紫, 贾国伟, 赵砚珑, 张鑫, 李建荣. 金属有机框架材料对非二氧化碳温室气体捕捉研究进展[J]. 化工学报, 2023, 74(1): 365-379. |
[12] | 闫军营, 王皝莹, 李瑞瑞, 符蓉, 蒋晨啸, 汪耀明, 徐铜文. 选择性电渗析:机遇与挑战[J]. 化工学报, 2023, 74(1): 224-236. |
[13] | 陈晨, 杨倩, 陈云, 张睿, 刘冬. 不同氧浓度下煤挥发分燃烧的化学动力学研究[J]. 化工学报, 2022, 73(9): 4133-4146. |
[14] | 郭丹, 方雨洁, 许一寒, 李致远, 黄守莹, 王胜平, 马新宾. 乙烷和二氧化碳催化转化的研究进展[J]. 化工学报, 2022, 73(8): 3406-3416. |
[15] | 王佳铭, 阮雪华, 贺高红. 面向不同工业二氧化碳分离体系的膜材料研究进展[J]. 化工学报, 2022, 73(8): 3417-3432. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||