化工学报 ›› 2016, Vol. 67 ›› Issue (12): 4915-4921.DOI: 10.11949/j.issn.0438-1157.20161276
夏力, 冯园丽, 项曙光
收稿日期:
2016-09-12
修回日期:
2016-09-19
出版日期:
2016-12-05
发布日期:
2016-12-05
通讯作者:
项曙光。xsg@qust.edu.cn
基金资助:
国家自然科学基金项目(21406124)。
XIA Li, FENG Yuanli, XIANG Shuguang
Received:
2016-09-12
Revised:
2016-09-19
Online:
2016-12-05
Published:
2016-12-05
Supported by:
supported by the National Natural Science Foundation of China(21406124).
摘要:
(火积)和(火积)耗散极值原理的提出,为化工过程系统节能开辟了新的方向。阐述了(火积)的物理意义、(火积)是过程量等(火积)理论的最新研究成果,从(火积)在换热器设计、热力学过程中的不可逆性、换热网络综合等方面的应用情况综述了(火积)理论在化工过程系统节能中的最新应用进展。重点围绕(火积)耗散率与熵产率的异同点比较分析、(火积)耗散极值原理与换热网络综合结合等方面,阐述了(火积)理论的科学性。
中图分类号:
夏力, 冯园丽, 项曙光. (火积)理论及其在化工过程节能中的应用进展[J]. 化工学报, 2016, 67(12): 4915-4921.
XIA Li, FENG Yuanli, XIANG Shuguang. Progress and application of entransy theory in energy saving of chemical processes[J]. CIESC Journal, 2016, 67(12): 4915-4921.
[1] | HU H, ZHANG X H, LIN L L. The interactions between China's economic growth, energy production and consumption and the related air emissions during 2000-2011[J]. Ecological Indicators, 2014, 46(46):38-51. |
[2] | 新华网. 中华人民共和国国民经济和社会发展第十三个五年规划纲要[EB/OL].[2016-03-17]. http://www.china.com.cn/lianghui/news/2016-03/17/content_38053101.htm. Xinhua net. People's Republic of China national economic and social development five thirteenth year plan outline[EB/OL].[2016-03-17]. http://www.china.com.cn/lianghui/news/2016-03/17/content_38053101.htm. |
[3] | 吴晶. 热学中的势能(火积)及其应用[D]. 北京:清华大学, 2009. WU J. Potential energy(entransy) in thermal science and its application[D]. Beijing:Tsinghua University, 2009. |
[4] | 过增元. 热学中的新物理量[J]. 工程热物理学报, 2008, 29(1):112-114. GUO Z Y. New physical quantities in heat[J]. Journal of Engineering Thermophysics, 2008, 29(1):112-114. |
[5] | 柴立和, 蒙毅, 彭晓峰. 传热学研究及其未来发展的新视角探索[J].自然杂志, 1999, 21(1):4-7. CHAI L H, MENG Y, PENG X F. Investigation and new perspective on the trends of heat transfer[J]. Chin. J. Nat., 1999, 21(1):4-7. |
[6] | 程雪涛, 梁新刚, 过增元. 孤立系统内传热过程的(火积)减原理[J].科学通报, 2011, 56(3):222-230. CHENG X T, LIANG X G, GUO Z Y. Entransy decrease principle of heat transfer in an isolated system[J]. Chin. Sci. Bull., 2011, 56(3):222-230. |
[7] | 过增元, 梁新刚, 朱宏晔.(火积)——描述物体传递热量能力的物理量[J]. 自然科学进展, 2006, 16(10):1288-1296. GUO Z Y, LIANG X G, ZHU H Y. Entransy-a physical quantity describing heat transfer ability[J]. Prog. Nat. Sci., 2006, 16(10):1288-1296. |
[8] | GUO Z Y, ZHU H Y, LIANG X G. Entransy-a physical quantity describing heat transfer ability[J]. Int. J. Heat Mass Transfer, 2007, 50(13/14):2545-2556. |
[9] | 程新广.(火积)及其在传热优化中的应用[D]. 北京:清华大学, 2004. CHENG X G. Entransy and its applications in heat transfer optimization[D]. Beijing:Tsinghua University, 2004. |
[10] | 程新广, 李志信, 过增元. 热传导中的变分原理[J]. 工程热物理学报, 2004, 25(3):457-459. CHENG X G, LI Z X, GUO Z Y. Variational principles in heat conduction[J]. Journal of Engineering Thermophysics, 2004, 25(3):457-459. |
[11] | 程新广, 孟继安, 过增元. 导热优化中的最小传递势容耗散与最小熵产[J]. 工程热物理学报, 2005, 26(6):1034-1036. CHENG X G, MENG J A, GUO Z Y. Potential capacity dissipation minimization and entropy generation minimization in heat conduction optimization[J]. Journal of Engineering Thermophysics, 2005, 26(6):1034-1036. |
[12] | 过增元, 程新广, 夏再忠. 最小热量传递势容耗散原理及其在导热优化中的应用[J]. 科学通报, 2003, 48(1):22-25. GUO Z Y, CHENG X G, XIA Z Z. The principle potential capacity dissipation minimization and its applications in heat conduction optimization[J]. Chin. Sci. Bull., 2003, 48(1):22-25. |
[13] | LIU X, CHEN L G, FENG H J, et al. Constructal design for blast furnace wall based on the entransy theory[J]. Applied Thermal Engineering, 2016, 100:798-804. |
[14] | WANG W H, CHEN X T, LIANG X G. Entransy definition and its balance equation for heat transfer with vaporization processes[J]. Int. J. Heat Mass Tran., 2015, 83:536-544. |
[15] | CHEN Q, WANG M, PAN N, et al. Irreversibility of heat conduction in complex multiphase systems and its application to the effective thermal conductivity of porous media[J]. Int. J. Nonlinear Sci. Numer. Simul., 2009, 10(1):57-66. |
[16] | ZHANG L, LIU X H, ZHAO K, et al. Entransy analysis and application of a novel indoor cooling system in a large space building[J]. Int. J. Heat Mass Tran., 2015, 85:228-238. |
[17] | YU H D, WEN J, XU G Q, et al. Theoretically and numerically investigation about the novel evaluating standard for convective heat transfer enhancement based on the entransy theory[J]. Int. J. Heat Mass Tran., 2016, 98:183-192. |
[18] | ZHOU B, CHENG X T, WANG W H, et al. Entransy analyses of thermal processes with variable thermophysical properties[J]. Int. J. Heat Mass Tran., 2015, 90:1244-1254. |
[19] | XU M T, GUO J, CHENG L. Application of entransy dissipation theory in heat convection[J]. Front Energy Power Eng. China, 2009, 3:402-405. |
[20] | AHMADI M H, AHMADI M A, POURFAYAZ F, et al. Entransy analysis and optimization of performance of nano-scale irreversible Otto cycle operating with Maxwell-Boltzmann ideal gas[J]. Chem. Phy. Lett., 2016, 658:293-302. |
[21] | GUO J F, HUAI X L. The heat transfer mechanism study of three-tank latent heat storage system based on entransy theory[J]. Int. J. Heat Mass Tran., 2016, 97:191-200. |
[22] | FENG H J, CHEN L G., XIE Z H, et al. Constructal entransy dissipation rate minimization for solid-gas reactors with heat and mass transfer in a disc-shaped body[J]. Int. J. Heat Mass Tran., 2015, 89:24-32. |
[23] | CHENG X, LIANG X. Entransy flux of thermal radiation and its application to enclosures with opaque surfaces[J]. Int. J. Heat Mass Tran., 2011, 54(1/2/3):269-278. |
[24] | ÖZEL G, AÇIKKALP E, GÖRGÜN B, et al. Optimum insulation thickness determination using the environmental and life cycle cost analyses based entransy approach[J]. Sustainable Energy Technologies and Assessments, 2015, 11:87-91. |
[25] | XU M T. Entransy dissipation theory and its application in heat transfer[M]//DOS SANTOS BERNARDES M A. Developments in Heat Transfer. Rijeka:The M. L. T. Press, 2011:247-272. |
[26] | CHEN Q, LIANG X, GUO Z Y. Entransy-a novel theory in heat transfer analysis and optimization[M]//DOS SANTOS BERNARDES M A. Developments in Heat Transfer. Rijeka, Croatia:In Tech-Open Access Publisher, 2011:349-372. |
[27] | LI Z, GUO Z Y. Optimization principles for heat convection[M]//WANG L Q. Advances in Transport Phenomena. Berlin:Springer-Verlag, 2011:1-91. |
[28] | 陈林根.(火积)理论及其应用的进展[J]. 科学通报, 2012, 57(30):2815-2835. CHEN L G. Progress in entransy theory and its applications[J]. Chin. Sci. Bull., 2012, 57(30):2815-2835. |
[29] | 赵甜, 陈群.(火积)的宏观物理意义及其应用[J]. 物理学报, 2013, 62(23):234401. ZHAO T, CHEN Q. Macroscopic physical meaning of entransy and its application[J]. Acta Phys. Sin., 2013, 62(23):234401. |
[30] | 胡帼杰, 曹炳阳, 过增元. 系统的(火积)与可用(火积)[J]. 科学通报, 2011, 56(19):1575-1577. HU G J, CAO B Y, GUO Z Y. Entransy and entropy revisited[J]. Chin. Sci. Bull., 2011, 56(19):1575-1577. |
[31] | 朱宏晔, 陈泽敬, 过增元.(火积)耗散极值原理的电热模拟实验研究[J]. 自然科学进展, 2007, 17(12):1692-1698. ZHU H Y, CHEN Z J, GUO Z Y. Experimental study on electrothermal simulation of extremum principle of entransy dissipation[J]. Prog. Nat. Sci., 2007, 17(12):1692-1698. |
[32] | 王松平, 陈清林, 张冰剑.(火积)传递方程及其应用[J]. 科学通报, 2009, 54(15):2247-2251. WANG S F, CHEN Q L, ZHANG B J. An equation of entransy transfer and its application[J]. Chin. Sci. Bull., 2009, 54(15):2247-2251. |
[33] | BEJAN A. Advanced Engineering Thermodynamics[M]. New York:Wiley, 1988. |
[34] | 郭江峰. 换热器的热力学分析与优化设计[D]. 济南:山东大学, 2011. GUO J F. Thermodynamic analysis and optimization design of heat exchanger[D]. Jinan:Shandong University, 2011. |
[35] | 郭江峰, 程林, 许明田.(火积)耗散数及其应用[J]. 科学通报, 2009, 54(19):2998-3002. GUO J F, CHENG L, XU M T. Entransy dissipation number and its application to heat exchanger performance evaluation[J]. Chin. Sci. Bull., 2009, 54(19):2998-3002. |
[36] | 许明田, 程林, 郭江峰.(火积)耗散理论在换热器设计中的应用[J]. 工程热物理学报, 2009, 30(12):2090-2092. XU T M, CHENG L, GUO J F. An application of entransy dissipation theory to heat exchanger design[J]. Journal of Engineering Thermophysics, 2009, 30(12):2090-2092. |
[37] | 宋伟明, 孟继安, 梁新刚, 等. 一维换热器中温差场均匀性原则的证明[J]. 化工学报, 2008, 59(10):2460-2464. SONG W M, MENG J A, LIANG X G. Demonstration of uniformity principle of temperature difference field for one-dimensional heat exchanger[J]. Journal of Chemical Industry and Engineering(China), 2008, 59(10):2460-2464. |
[38] | 郭江峰, 许明田, 程林. 换热器设计中的(火积)耗散均匀性原则[J]. 中国科学:技术科学, 2010, 40(6):671-676. GUO J F, XU M T, CHENG L. Principle of equipartition of entransy dissipation heat exchanger design[J]. Sci. China Tech. Sci., 2010, 40(6):671-676. |
[39] | 刘明方. 热声热机换热器的特性研究[D]. 武汉:武汉工程大学, 2012. LIU M F. Study on characteristics of oscillating heat exchanger in thermoacoustic engine[D].Wuhan:Wuhan Institute of Technology, 2012. |
[40] | 姚杰, 王景刚, 安迎超.(火积)及其在优化矿井回风换热器中的应用[J]. 科技创新与应用, 2012, 12(23):5. YAO J, WANG J G, AN Y C. Entransy and its application in the optimization of the mine return air heat exchanger[J]. Technology Innovation and Application, 2012, 12(23):5. |
[41] | 夏少军, 陈林根, 戈延林. 热漏对换热器(火积)耗散最小化的影响[J]. 物理学报, 2014, 63(2):020505. XIA S J, CHEN L G, GE Y L. Influence of heat leakage on entransy dissipation minimization of heat exchanger[J]. Acta Phys. Sin., 2014, 63(2):020505. |
[42] | XU M T. The thermodynamic basis of entransy and entransy dissipation[J]. Energy, 2011, 36(7):4272-4277. |
[43] | 程雪涛, 梁新刚, 徐向华.(火积)的微观表述[J]. 物理学报, 2011, 60(6):060512. CHENG X T, LIANG X G, XU X H. Microscopic expression of entransy[J]. Acta Phys. Sin., 2011, 60(6):060512. |
[44] | 程雪涛, 梁新刚. 微观状态数与可用(火积)的关系[J]. 科学通报, 2012, 57(14):1263-1269. CHENG X T, LIANG X G. Relationship between microstate number and available entransy[J]. Chin. Sci. Bull., 2012, 57(14):1263-1269. |
[45] | 王文华, 程雪涛, 梁新刚.(火积)耗散与热力学过程的不可逆性[J].科学通报, 2012, 57(26):2537-2544. WANG W H, CHENG X T, LIANG X G. Entransy dissipation and irreversibility[J]. Chin. Sci. Bull., 2012, 57(26):2537-2544. |
[46] | 程雪涛, 梁新刚.(火积)理论在热功转换过程中的应用探讨[J]. 物理学报, 2014, 63(19):32-39. CHENG X T, LIANG X G. Discussion on the application of entransy theory to heat-work conversion process[J]. Acta Phys. Sin., 2014, 63(19):32-39. |
[47] | 陈则韶, 李川, 胡汉平, 等. 不可逆过程的有效能消耗率及不可逆度[J]. 工程热物理学报, 2014, 35(3):411-415. CHEN Z S, LI C, HU H P, et al. The effective energy consumption rate and the degree of irreversible process of irreversible process[J]. Journal of Engineering Thermophysics, 2014, 35(3):411-415. |
[48] | KIM H K, KIM K. Comparative analyses of energy-exergy-entransy for the optimization of heat-work conversion in power generation systems[J]. Int. J. Heat Mass Tran., 2015, 84(4):80-90. |
[49] | 郭江峰, 许明田, 程林. 换热量和换热面积给定时的(火积)耗散最小原则[J]. 科学通报, 2010, 55(32):3141-3148. GUO J F, XU M T, CHENG L. The entransy dissipation minimization principle under given heat duty and heat transfer area conditions[J]. Chin. Sci. Bull., 2010, 55(32):3141-3148. |
[50] | 陈群, 许云超, 过增元. 传热学中的状态图及其应用[J]. 科学通报, 2012, 57(28):2771-2777. CHEN Q, XU Y C, GUO Z Y. The property diagram in heat transfer and its applications[J]. Chin. Sci. Bull., 2012, 57(28):2771-2777. |
[51] | WU J, GUO Z Y. Application of entransy analysis in self-heat recuperation technology[J]. Ind. Eng. Chem. Res., 2013, 53(3):1274-1285. |
[52] | CHEN Q. Entransy dissipation-based thermal resistance method for heat exchanger performance design and optimization[J]. Int. J. Heat Mass Tran., 2013, 60(1):156-162. |
[53] | 王怡飞, 陈群. 基于(火积)耗散热阻的换热器网络优化[J].化工学报, 2015, 66(S1):272-276. WANG Y F, CHEN Q. An entransy dissipation resistance-based method for optimization of heat exchanger networks[J]. CIESC Journal, 2015, 66(S1):272-276. |
[54] | XU Y C, CHEN Q, GUO Z Y. Entransy dissipation-based constraint for optimization of heat exchanger networks in thermal systems[J]. Energy, 2015, 86:696-708. |
[55] | XU Y C, CHEN Q, GUO Z Y. Optimization of heat exchanger networks based on Lagrange multiplier method with the entransy balance equation as constraint[J]. Int. J. Heat Mass Tran., 2016, 95:109-115. |
[56] | 朱宏晔. 基于(火积)耗散的最小热阻原理[D]. 北京:清华大学, 2007. ZHU H Y. Minimum thermal resistance principle based on entransy dissipation theory[D]. Beijing:Tsinghua University, 2009. |
[57] | 陈群. 对流传递过程的不可逆性及其优化[D]. 北京:清华大学, 2008. CHEN Q. Irreversibility and optimization of convective transport process[D]. Beijing:Tsinghua University, 2008. |
[58] | 柳雄斌. 换热器及散热通道网络热性能的(火积)分析[D]. 北京:清华大学, 2009. LIU X B. Entransy analysis of thermal performance for heat exchangers and cooling channel networks[D]. Beijing:Tsinghua University, 2009. |
[59] | 魏曙寰. 热传导(火积)耗散率最小构形优化[D]. 武汉:海军工程大学, 2009. WEI S H. Constructal optimization with minimum entransy dissipation rate in heat conduction[D]. Wuhan:Naval University of Engineering, 2009. |
[60] | 肖庆华. 基于(火积)耗散极值原理的传热传质构形优化研究[D]. 武汉:海军工程大学, 2011. XIAO Q H. Constructal optimization of heat and mass transfer process based on the entransy dissipation extremum principle[D]. Wuhan:Naval University of Engineering, 2011. |
[61] | 夏少军. 不可逆过程和循环的广义热力学动态优化[D]. 武汉:海军工程大学, 2012. XIA S J. Generalized thermodynamic optimization of irreversible processes and cycles[D]. Wuhan:Naval University of Engineering, 2012. |
[62] | ÇARPINLIO?LU M Ö. A comment on the concept of entransy(versus exergy) for the performance assessment of a desiccant cooling system[J]. Energy and Buildings, 2015, 101:163-167. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[3] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[4] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[5] | 李贵贤, 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
[6] | 王光, 单发顺, 钱禹丞, 焦建芳. 基于集成学习传递熵的化工过程微小故障检测方法[J]. 化工学报, 2023, 74(7): 2967-2978. |
[7] | 邵远哲, 赵忠盖, 刘飞. 基于共同趋势模型的非平稳过程质量相关故障检测方法[J]. 化工学报, 2023, 74(6): 2522-2537. |
[8] | 卫雪岩, 钱勇. 微米级铁粉燃料中低温氧化反应特性及其动力学研究[J]. 化工学报, 2023, 74(6): 2624-2638. |
[9] | 贠程, 王倩琳, 陈锋, 张鑫, 窦站, 颜廷俊. 基于社团结构的化工过程风险演化路径深度挖掘[J]. 化工学报, 2023, 74(4): 1639-1650. |
[10] | 王子宗, 索寒生, 赵学良. 数字孪生智能乙烯工厂研究与构建[J]. 化工学报, 2023, 74(3): 1175-1186. |
[11] | 王雅琳, 潘雨晴, 刘晨亮. 基于GSA-LSTM动态结构特征提取的间歇过程监测方法[J]. 化工学报, 2022, 73(9): 3994-4002. |
[12] | 郭金玉, 王哲, 李元. 基于核熵独立成分分析的故障检测方法[J]. 化工学报, 2022, 73(8): 3647-3658. |
[13] | 杨岭, 崔国民, 周志强, 肖媛. 精细搜索策略应用于质量交换网络综合[J]. 化工学报, 2022, 73(7): 3145-3155. |
[14] | 王琨, 侍洪波, 谭帅, 宋冰, 陶阳. 局部时差约束邻域保持嵌入算法在故障检测中的应用[J]. 化工学报, 2022, 73(7): 3109-3119. |
[15] | 张欣, 周利, 王诗慧, 吉旭, 毕可鑫. 考虑原油性质波动的炼厂氢气网络集成优化[J]. 化工学报, 2022, 73(4): 1631-1646. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||