化工学报 ›› 2022, Vol. 73 ›› Issue (4): 1631-1646.doi: 10.11949/0438-1157.20211657

• 过程系统工程 • 上一篇    下一篇

考虑原油性质波动的炼厂氢气网络集成优化

张欣(),周利(),王诗慧,吉旭,毕可鑫   

  1. 四川大学化学工程学院,四川 成都 610065
  • 收稿日期:2021-11-18 修回日期:2022-01-07 出版日期:2022-04-05 发布日期:2022-04-25
  • 通讯作者: 周利 E-mail:xinscu@outlook.com;chezli@scu.edu.cn
  • 作者简介:张欣(1997—),女,硕士研究生,xinscu@outlook.com
  • 基金资助:
    国家重点研发计划项目(2021YFB40005);中央高校基本科研业务费专项资金项目(YJ201838);国家自然科学基金项目(22108178)

Integrated optimization of refinery hydrogen networks with crude oil properties fluctuations

Xin ZHANG(),Li ZHOU(),Shihui WANG,Xu JI,Kexin BI   

  1. School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
  • Received:2021-11-18 Revised:2022-01-07 Published:2022-04-05 Online:2022-04-25
  • Contact: Li ZHOU E-mail:xinscu@outlook.com;chezli@scu.edu.cn

摘要:

针对原油性质的不确定性,提出了一种基于质量传递机理的随机规划建模框架,以实现炼厂氢气网络在经济效益和抗扰能力上的同步优化。该框架耦合了常减压蒸馏、加氢精制以及闪蒸分离等过程单元,从微观上解析原油性质波动对网络运行的影响;采用了代理模型技术增设脱硫模块,并利用了二阶段随机规划方法改造管网,从宏观上优化氢气网络以满足生产要求。为验证所提方法的有效性和适用性,对某一现有的炼厂氢网络进行了改造设计研究。结果表明,集成过程单元的多场景优化策略能够有效提升网络的经济性能,并且能使其灵活应对因原油性质波动引起的操作场景的改变。

关键词: 氢气网络, 优化设计, 集成, 过程系统, 代理模型技术, 随机规划

Abstract:

A stochastic programming modeling framework based on mass transfer mechanism was proposed, which took the uncertainty of crude oil properties into consideration, to achieve the simultaneous optimization of economic performance and disturbance rejection ability of refinery hydrogen network. The framework integrated process units such as atmospheric and vacuum distillation, hydrofining and flash separation to analyze the impact of crude oil properties fluctuations on network operation microscopically; adopted surrogate-assisted techniques to embed desulfurization unit and used the two-stage stochastic programming approach to retrofit network, so as to optimize hydrogen network macroscopically to meet production requirements. To verify the effectiveness and applicability of the proposed method, studies on the optimization design of an industrial hydrogen system were presented. The results show that the multi-scenario optimization strategy integrated process units can effectively improve the economic performance of hydrogen network. And it can flexibly respond to changes in operating scenarios caused by fluctuations in crude oil properties.

Key words: hydrogen network, optimal design, integration, process systems, surrogate modeling techniques, stochastic programming

中图分类号: 

  • TE 68

图1

南疆原油性质分析数据"

图2

氢气网络超结构"

图3

炼厂氢气分配网络建模框架"

图4

炼厂现有氢气网络结构图"

表1

各场景下原油中的硫、氮含量数据"

场景硫含量/(mg/kg)氮含量/(mg/kg)发生概率
10.90970.20160.0400
20.90970.20580.1000
30.90970.21000.0600
40.94930.20160.1000
50.94930.20580.2500
60.94930.21000.1500
70.98880.21060.0600
80.98880.20580.1500
90.98880.21000.0900

表2

加氢处理装置进料流量及操作条件"

加氢处理装置油品流量/(t/h)T/KP/barLHSV/h-1
DHT-1150.0063367.21.92
DHT-2373.8164870.02.00
GHT216.6751327.03.00
KHT-150.0055338.32.25
KHT-270.0057354.51.79

表3

预留脱硫塔和氢阱之间的管道距离"

项目距离/m
DHT-1DHT-2GHTKHT-1KHT-2
HP-DS540360350450550
LP-DS48031050075090

表4

加氢处理装置进料组成"

ItemDHT-1DHT-2GHTKHT-1KHT-2
DHT1-PC10.70410000
DHT1-PC20.29590000
DHT2-PC100.7935000
DHT2-PC200.2065000
GHT-PC001.000000
KHT1-PC0001.00000
KHT2-PC00001.0000

表5

虚拟组分性质"

虚拟组分相对密度分子量馏程/℃
HK(初馏点)10%50%90%KK(终馏点)
DHT1-PC10.8478239.567208249300346370
DHT1-PC20.8647246.974225256311354380
DHT2-PC10.8439233.709211248291347370
DHT2-PC20.8396227.525180233288348376
GHT-PC0.744195.42036.949.9105172202
KHT1-PC0.7832155.505151172189230
KHT2-PC0.8122180.524124257363373

表6

脱硫装置的输入变量范围"

项目输入变量范围/(kmol/h)
FH2inFC1inFC2inFC3inFC4inFC5inFH2SinFNH3inFMDEAin
HP-DSU7000500100903510401065
HP-DSL30001704540101.510210
LP-DSU150408.4510.54.00.1510
LP-DSL2050.50.10.10.010.10.012

图5

代理模型精度与复杂度对比"

表7

脱硫单元代理模型验证结果"

输出变量HP-DS单元LP-DS单元
RMSER2RMSER2
FH2out0.000230.99990.000010.9999
FC1out0.000340.99990.000070.9999
FC2out0.004290.99960.003330.9997
FC3out0.014900.99480.004300.9996
FH2Sout0.024990.98880.016560.9940
Ffraout0.004850.99930.000340.9999

图6

HP-DS单元代理模型的残差图"

图7

LP-DS单元代理模型的残差图"

图8

基于确定性场景的氢气网络优化设计"

"

项目原氢气网络模型确定性模型随机规划模型
变量数量629797
方程个数68132132
CPU计算时间0.016 s2.578 s44.875 s
计算机配置64位操作系统,16 GB RAM 1.10 GHz Intel Core i7-10710U
求解器GAMS-DICOPT

表9 各模型的计算量及优化时间"

图9

各场景下DHT-1中H2的消耗量及H2S的生成量"

图10

基于随机规划的氢气网络优化设计"

图11

确定性模型与随机规划模型的脱硫单元处理量及脱硫率对比"

图12

低硫、低氮场景下的运行策略"

图13

高硫、高氮场景下的运行策略"

1 Simpson D M. Hydrogen management in a synthetic crude refinery[J]. International Journal of Hydrogen Energy, 1984, 9(1/2): 95-99.
2 Alves J J, Towler G P. Analysis of refinery hydrogen distribution systems[J]. Industrial & Engineering Chemistry Research, 2002, 41(23): 5759-5769.
3 Liao Z W, Rong G, Wang J D, et al. Rigorous algorithmic targeting methods for hydrogen networks(Ⅱ): Systems with one hydrogen purification unit[J]. Chemical Engineering Science, 2011, 66(5): 821-833.
4 杨敏博, 冯霄. 提纯回用氢网络的夹点变化规律[J]. 化工学报, 2013, 64(12): 4544-4549.
Yang M B, Feng X. Change rules of pinch point for hydrogen distribution systems with purification reuse[J]. CIESC Journal, 2013, 64(12): 4544-4549.
5 Hallale N, Liu F. Refinery hydrogen management for clean fuels production[J]. Advances in Environmental Research, 2001, 6(1): 81-98.
6 Liu F, Zhang N. Strategy of purifier selection and integration in hydrogen networks[J]. Chemical Engineering Research and Design, 2004, 82(10): 1315-1330.
7 Liao Z W, Wang J D, Yang Y R, et al. Integrating purifiers in refinery hydrogen networks: a retrofit case study[J]. Journal of Cleaner Production, 2010, 18(3): 233-241.
8 Liao Z W, Tu G N, Lou J Y, et al. The influence of purifier models on hydrogen network optimization: insights from a case study[J]. International Journal of Hydrogen Energy, 2016, 41(10): 5243-5249.
9 李开宇, 刘桂莲. 储氢提纯和氢网络的耦合优化[J]. 化工学报, 2020, 71(3): 1143-1153.
Li K Y, Liu G L. Coupling optimization of hydrogen-storage based purification and hydrogen network[J]. CIESC Journal, 2020, 71(3): 1143-1153.
10 Liu G L, Tang M Y, Feng X, et al. Evolutionary design methodology for resource allocation networks with multiple impurities[J]. Industrial & Engineering Chemistry Research, 2011, 50(5): 2959-2970.
11 刘桂莲, 刘永彪, 冯霄. 炼厂多杂质氢网络的集成[J]. 化工学报, 2012, 63(1): 163-169.
Liu G L, Liu Y B, Feng X. Integration of refinery hydrogen network with multiple impurities[J]. CIESC Journal, 2012, 63(1): 163-169.
12 Lou Y Q, Liao Z W, Sun J Y, et al. A novel two-step method to design inter-plant hydrogen network[J]. International Journal of Hydrogen Energy, 2019, 44(12): 5686-5695.
13 Jia N, Zhang N. Multi-component optimisation for refinery hydrogen networks[J]. Energy, 2011, 36(8): 4663-4670.
14 Umana B, Shoaib A, Zhang N, et al. Integrating hydroprocessors in refinery hydrogen network optimisation [J]. Applied Energy, 2014, 133: 169-182.
15 Umana B, Zhang N, Smith R. Development of vacuum residue hydrodesulphurization-hydrocracking models and their integration with refinery hydrogen networks[J]. Industrial & Engineering Chemistry Research, 2016, 55(8): 2391-2406.
16 Zhang Q, Li J, Feng X. Thermodynamic principle based hydrogen network synthesis with hydrorefining feed oil sulfur content variation for total exergy minimization[J]. Journal of Cleaner Production, 2020, 256: 120230.
17 Zhou L, Liao Z W, Wang J D, et al. Hydrogen sulfide removal process embedded optimization of hydrogen network[J]. International Journal of Hydrogen Energy, 2012, 37(23): 18163-18174.
18 Yang M B, Feng X. Simulation-based optimization and design of refinery hydrogen networks with hydrogen sulfide removal[J]. International Journal of Hydrogen Energy, 2019, 44(43): 23833-23845.
19 Wang S H, Zhou L, Ji X, et al. A surrogate-assisted approach for the optimal synthesis of refinery hydrogen networks[J]. Industrial & Engineering Chemistry Research, 2019, 58(36): 16798-16812.
20 Li H R, Liao Z W, Sun J Y, et al. Simultaneous design of hydrogen allocation networks and PSA inside refineries[J]. Industrial & Engineering Chemistry Research, 2020, 59(10): 4712-4720.
21 Xia Z P, Wang S H, Zhou L, et al. Surrogate-assisted optimization of refinery hydrogen networks with hydrogen sulfide removal[J]. Journal of Cleaner Production, 2021, 310: 127477.
22 Chen Y, Lin M, Jiang H, et al. Optimal design and operation of refinery hydrogen systems under multi-scale uncertainties[J]. Computers & Chemical Engineering, 2020, 138: 106822.
23 Sahinidis N V. Optimization under uncertainty: state-of-the-art and opportunities[J]. Computers & Chemical Engineering, 2004, 28(6/7): 971-983.
24 Almansoori A, Shah N. Design and operation of a future hydrogen supply chain: snapshot model[J]. Chemical Engineering Research and Design, 2006, 84(6): 423-438.
25 Betancourt-torcat A, Almansoori A, Elkamel A, et al. Stochastic modeling of the oil sands operations under greenhouse gas emission restrictions and water management[J]. Energy & Fuels, 2013, 27(9): 5559-5578.
26 Jiao Y Q, Su H Y, Hou W F, et al. Optimization of refinery hydrogen network based on chance constrained programming[J]. Chemical Engineering Research and Design, 2012, 90(10): 1553-1567.
27 Jagannath A, Almansoori A. Modeling of hydrogen networks in a refinery using a stochastic programming appraoch[J]. Industrial & Engineering Chemistry Research, 2014, 53(51): 19715-19735.
28 Lou J Y, Liao Z W, Jiang B B, et al. Robust optimization of hydrogen network[J]. International Journal of Hydrogen Energy, 2014, 39(3): 1210-1219.
29 Lin D K J, Box G E P, Draper N R, et al. Empirical model building and response surface[J]. Journal of the American Statistical Association, 1998, 93(441): 401.
30 Kleijnen J P C. Kriging metamodeling in simulation: a review[J]. European Journal of Operational Research, 2009, 192(3): 707-716.
31 Drucker H, Surges C J C, Kaufman L, et al. Support vector regression machines[J]. Advances in Neural Information Processing Systems, 1997: 155-161.
32 Haykin S S. Neural Networks and Learning Machines[M]. 3rd ed. Pearson Education: Upper Saddle River, 2009.
33 Brownbridge G, Azadi P, Smallbone A, et al. The future viability of algae-derived biodiesel under economic and technical uncertainties[J]. Bioresource Technology, 2014, 151: 166-173.
34 Sobol I M. On the distribution of points in a cube and the approximate evaluation of integrals[J]. USSR Computational Mathematics and Mathematical Physics, 1967, 7(4): 86-112.
35 李梅, 程逵炜, 孙兆虎, 等. 井口天然气醇胺法脱酸系统的模拟优化[J]. 工程热物理学报, 2015, 36(9): 1853-1857.
Li M, Cheng K W, Sun Z H, et al. Optimization of the miniature wellhead natural gas alkanolamine process deacidification units[J]. Journal of Engineering Thermophysics, 2015, 36(9): 1853-1857.
36 任远春, 刘为民, 霍明辰, 等. 常减压装置腐蚀性介质氯、氮、硫分布及传递研究[J]. 广东化工, 2021, 48(10): 179-181.
Ren Y C, Liu W M, Huo M C, et al. Research on distribution and transfer of corrosive media chlorine, nitrogen and sulfur in crude unit[J]. Guangdong Chemical Industry, 2021, 48(10): 179-181.
37 Wu L, Wang Y Q, Zheng L, et al. Stepwise optimization of hydrogen network integrated sulfur compound removal kinetics and a fluid catalytic cracker[J]. Chemical Engineering Research and Design, 2019, 151: 168-178.
38 Hasenberg D M, Campagnolo J F Jr. Modeling and simulation of a reaction for hydrotreating hydrocarbon oil: US5841678[P]. 1998-11-24.
39 宣吉, 廖祖维, 荣冈, 等. 基于随机规划的炼厂氢网络改造设计[J]. 化工学报, 2010, 61(2): 398-404.
Xuan J, Liao Z W, Rong G, et al. Hydrogen network retrofit design in refinery based on stochastic programming[J]. CIESC Journal, 2010, 61(2): 398-404.
40 Viswanathan J, Grossmann I E. A combined penalty function and outer-approximation method for MINLP optimization[J]. Computers & Chemical Engineering, 1990, 14(7): 769-782.
[1] 王琨, 侍洪波, 谭帅, 宋冰, 陶阳. 局部时差约束邻域保持嵌入算法在故障检测中的应用[J]. 化工学报, 2022, 73(7): 3109-3119.
[2] 杨岭, 崔国民, 周志强, 肖媛. 精细搜索策略应用于质量交换网络综合[J]. 化工学报, 2022, 73(7): 3145-3155.
[3] 赵涛岩, 曹江涛, 李平, 冯琳, 商瑀. 区间二型模糊免疫PID在环己烷无催化氧化温度控制系统中的应用[J]. 化工学报, 2022, 73(7): 3166-3173.
[4] 魏朋, 陈珺, 王志国, 刘飞. 基于双部分丢弃的模拟移动床产率提高策略[J]. 化工学报, 2022, 73(7): 3099-3108.
[5] 万景, 张霖, 樊亚超, 刘勰民, 骆培成, 张锋, 张志炳. 基于介尺度PBM模型的生物反应器放大模拟及实验研究[J]. 化工学报, 2022, 73(6): 2698-2707.
[6] 侯起旺, 文兆伦, 张忠林, 刘叶刚, 杨景轩, 陈东良, 郝晓刚, 官国清. 一种煤基多联产碳循环系统的设计及评价[J]. 化工学报, 2022, 73(5): 2073-2082.
[7] 钱宇, 陈耀熙, 史晓斐, 杨思宇. 太阳能波动特性大数据分析与风光互补耦合制氢系统集成[J]. 化工学报, 2022, 73(5): 2101-2110.
[8] 段文婷, 任思月, 冯霄, 王彧斐. 与换热网络热集成的精馏塔压优化[J]. 化工学报, 2022, 73(5): 2052-2059.
[9] 韩彪, 尚超, 江永亨, 黄德先. 面向对象的炼油厂全厂调度优化模型及程序框架[J]. 化工学报, 2022, 73(4): 1623-1630.
[10] 孟文亮, 李贵贤, 周怀荣, 李婧玮, 王健, 王可, 范学英, 王东亮. 绿氢重构的粉煤气化煤制甲醇近零碳排放工艺研究[J]. 化工学报, 2022, 73(4): 1714-1723.
[11] 张淑君, 王诗慧, 张欣, 吉旭, 戴一阳, 党亚固, 周利. 集成轻烃回收单元代理模型的氢气网络多目标优化[J]. 化工学报, 2022, 73(4): 1658-1672.
[12] 曹森山, 许锋, 罗雄麟. 基于稳定性的循环物流系统流程模拟——以催化裂化反应-再生系统为例[J]. 化工学报, 2022, 73(3): 1256-1269.
[13] 石晓青, 朱炜玄, 叶昊天, 韩志忠, 董宏光. 碳五隔壁反应精馏预处理工艺模拟及多目标优化[J]. 化工学报, 2022, 73(3): 1246-1255.
[14] 张建飞, 林嘉奖, 罗雄麟, 许锋. 重油催化裂化装置产品分布调控与优化模拟分析[J]. 化工学报, 2022, 73(3): 1232-1245.
[15] 魏朋, 陈珺, 王志国, 刘飞. 基于平衡理论的模拟移动床工艺参数鲁棒寻优[J]. 化工学报, 2022, 73(2): 792-800.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!