[1] |
葛志强, 宋执环. 基于PICA的过程监控方法[J]. 化工学报, 2008, 59(7):1665-1670. GE Z Q, SONG Z H. PICA based process monitoring method[J]. Journal of Chemical Industry and Engineering(China), 2008, 59(7):1665-1670.
|
[2] |
DENG X G, TIAN X M, CHEN S. Modified kernel principal component analysis based on local structure analysis and its application to nonlinear process fault diagnosis[J]. Chemometrics & Intelligent Laboratory Systems, 2013, 127(16):195-209.
|
[3] |
CAI L F, TIAN X M. A new process monitoring method based on noisy time structure independent component analysis[J]. Chinese Journal of Chemical Engineering, 2014, 23(1):162-172.
|
[4] |
GE Z Q, SONG Z H. Mixture Bayesian regularization method of PPCA for multimode process monitoring[J]. AIChE Journal, 2010, 56(11):2838-2849
|
[5] |
常鹏, 王普, 高学金, 等. 基于统计量模式分析的MKPLS间歇过程监控与质量预报[J]. 仪器仪表学报, 2014, 35(6):1409-1416. CHANG P, WANG P, GAO X J, et al. Batch process monitoring and quality prediction based on statistics pattern analysis and MKPLS[J]. Chinese Journal of Scientific Instrument, 2014, 35(6):1409-1416.
|
[6] |
冯海亮, 潘竞文, 黄鸿. 一种改进的邻域保持嵌入高光谱影像分类方法[J]. 光电工程, 2014, 41(9):45-50. FENG H L, PAN J W, HUANG H. An improved neighborhood preserving embedding method used in hyperspectral image classification[J]. Opto-Electronic Engineering, 2014, 41(9):45-50.
|
[7] |
ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5):2323-2326.
|
[8] |
BELKIN M, NIYOGI P. Laplacian Eigenmaps and spectral techniques for embedding and clustering[J]. Advances in Neural Information Processing Systems, 2002, 14(6):585-591.
|
[9] |
TENENBAUM J, SILVA V D, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500):2319-2323.
|
[10] |
HE X F, CAI D, YAN S C, et al. Neighborhood preserving embedding[C]//Proceedings of the Tenth IEEE International Conference on Computer Vision. 2005, 2:1208-1213.
|
[11] |
HUANG H, HUANG Y B. Improved discriminant sparsity neighborhood preserving embedding for hyperspectral image classification[J]. Neurocomputing, 2014, 136(1):224-234.
|
[12] |
CHEN X, ZHANG J S. A novel maximum margin neighborhood preserving embedding for face recognition[J]. Future Generation Computer Systems, 2012, 28(1):212-217.
|
[13] |
QI M M, ZHANG Y Q, LV D D, et al. Study on orthogonal tensor sparse neighborhood preserving embedding algorithm for dimension reduction[C]//Advanced Research and Technology in Industry Applications(WARTIA), 2014 IEEE Workshop on IEEE. 2014:1392-1396.
|
[14] |
SONG B, TAN S, SHI H B. Process monitoring via enhanced neighborhood preserving embedding[J]. Control Engineering Practice, 2016, 50:48-56.
|
[15] |
MA Y X, SONG B, SHI H B. Fault detection via local and nonlocal embedding[J]. Chemical Engineering Research and Design, 2015, 94:538-548.
|
[16] |
MIAO A M, GE Z Q, SONG Z H, et al. Nonlocal structure constrained neighborhood preserving embedding model and its application for fault detection[J]. Chemometrics & Intelligent Laboratory Systems, 2015, 142:184-196.
|
[17] |
宋冰, 马玉鑫, 方永锋, 等. 基于LSNPE算法的化工过程故障检测[J].化工学报, 2014, 65(2):620-627. SONG B, MA Y X, FANG Y F, et al. Fault detection for chemical process based on LSNPE method[J]. CIESC Journal, 2014, 65(2):620-627.
|
[18] |
KU W F, STORER R H, GEORGAKIS C. Disturbance detection and isolation by dynamic principal component analysis[J]. Chemometrics & Intelligent Laboratory Systems, 1995, 30:179-196.
|
[19] |
ODIOWEI P P, CAO Y. State-space independent component analysis for nonlinear dynamic process monitoring[J]. Chemometrics & Intelligent Laboratory Systems, 2010, 103:59-65.
|
[20] |
MIAO A M, GE Z Q, SONG Z H, et al. Time neighborhood preserving embedding model and it's application for fault detection[J]. Industrial & Engineering Chemistry Research, 2013, 52(38):13717-13729.
|
[21] |
HU K L, YUAN J Q. Statistical monitoring of fed-batch process using dynamic multi-way neighborhood preserving embedding[J]. Chemometrics & Intelligent Laboratory Systems, 2008, 90(2):195-203.
|
[22] |
SONG B, MA Y X, SHI H B. Multimode process monitoring using improved dynamic neighborhood preserving embedding[J]. Chemometrics & Intelligent Laboratory Systems, 2014, 135(2014):17-30.
|
[23] |
CHEN Q, WYNNE R J, GOULDING P, et al. The application of principal component analysis and kernel density estimation to enhance process monitoring[J]. Control Engineering Practice, 2000, 8(5):531-543.
|
[24] |
SAUL L K, ROWEIS S T. Think globally, fit locally:unsupervised learning of low dimensional manifolds[J]. The Journal of Machine Learning Research, 2003, 4:119-155.
|