化工学报 ›› 2023, Vol. 74 ›› Issue (4): 1805-1817.DOI: 10.11949/0438-1157.20221358
苏晓丹1(), 朱干宇2,3(), 李会泉2,4, 郑光明5, 孟子衡2,3, 李防5, 杨云瑞2,4, 习本军3, 崔玉1()
收稿日期:
2022-10-14
修回日期:
2023-03-20
出版日期:
2023-04-05
发布日期:
2023-06-02
通讯作者:
朱干宇,崔玉
作者简介:
苏晓丹(1997—),女,硕士研究生,suxiaodan@ipe.ac.cn
基金资助:
Xiaodan SU1(), Ganyu ZHU2,3(), Huiquan LI2,4, Guangming ZHENG5, Ziheng MENG2,3, Fang LI5, Yunrui YANG2,4, Benjun XI3, Yu CUI1()
Received:
2022-10-14
Revised:
2023-03-20
Online:
2023-04-05
Published:
2023-06-02
Contact:
Ganyu ZHU, Yu CUI
摘要:
湿法磷酸半水工艺可生产高浓度磷酸[w(P2O5)>40%(质量)],但在半水反应阶段磷矿易发生钝化,半水石膏结晶粒径小,造成工艺后端过滤困难,磷回收率降低。以湖北典型中低品位磷矿为原料,系统考察了半水工艺中SO
中图分类号:
苏晓丹, 朱干宇, 李会泉, 郑光明, 孟子衡, 李防, 杨云瑞, 习本军, 崔玉. 湿法磷酸半水工艺考察与石膏结晶过程研究[J]. 化工学报, 2023, 74(4): 1805-1817.
Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum[J]. CIESC Journal, 2023, 74(4): 1805-1817.
成分 | 含量/%(质量) |
---|---|
CaO | 48.22 |
P2O5 | 29.53 |
SiO2 | 9.61 |
Al2O3 | 2.66 |
K2O | 1.28 |
MgO | 1.39 |
Fe2O3 | 0.86 |
Na2O | 0.53 |
F | 3.11 |
其他 | 2.81 |
表1 磷矿化学组分
Table 1 Composition of phosphate rock
成分 | 含量/%(质量) |
---|---|
CaO | 48.22 |
P2O5 | 29.53 |
SiO2 | 9.61 |
Al2O3 | 2.66 |
K2O | 1.28 |
MgO | 1.39 |
Fe2O3 | 0.86 |
Na2O | 0.53 |
F | 3.11 |
其他 | 2.81 |
成分 | 含量/%(质量) | |
---|---|---|
现场石膏 | 优化石膏 | |
CaO | 37.53 | 39.26 |
SO3 | 47.99 | 52.53 |
P2O5 | 5.75 | 1.39 |
SiO2 | 5.79 | 5.17 |
Al2O3 | 0.67 | 0.16 |
MgO | 0.15 | — |
K2O | 0.51 | 0.20 |
Fe2O3 | 0.43 | 0.41 |
F | 0.68 | 0.44 |
其他 | 0.50 | 0.44 |
表2 半水石膏组成对比
Table 2 The composition of different hemihydrate gypsum
成分 | 含量/%(质量) | |
---|---|---|
现场石膏 | 优化石膏 | |
CaO | 37.53 | 39.26 |
SO3 | 47.99 | 52.53 |
P2O5 | 5.75 | 1.39 |
SiO2 | 5.79 | 5.17 |
Al2O3 | 0.67 | 0.16 |
MgO | 0.15 | — |
K2O | 0.51 | 0.20 |
Fe2O3 | 0.43 | 0.41 |
F | 0.68 | 0.44 |
其他 | 0.50 | 0.44 |
1 | Hu Z J, Zhang T, Lv L, et al. Extraction performance and mechanism of TBP in the separation of Fe3+ from wet-processing phosphoric acid[J]. Separation and Purification Technology, 2021, 272: 118822. |
2 | Wang B Q, Yang L, Luo T, et al. Study on the kinetics of hydration transformation from hemihydrate phosphogypsum to dihydrate phosphogypsum in simulated wet process phosphoric acid[J]. ACS Omega, 2021, 6(11): 7342-7350. |
3 | 吴佩芝. 湿法磷酸[M]. 北京: 化学工业出版社, 1987: 7-20. |
Wu P Z. Wet Phosphoric Acid[M]. Beijing: Chemical Industry Press, 1987: 7-20. | |
4 | 刘同海. 湿法磷酸体系中二水硫酸钙结晶过程的研究[D]. 合肥: 合肥工业大学, 2016. |
Liu T H. Study on the crystallization process of calcium sulfate dihydrate in the wet process phosphoric acid system[D]. Hefei: Hefei University of Technology, 2016. | |
5 | 周华波. 半水-二水法、二水法磷酸工艺浓磷酸质量比较[J]. 磷肥与复肥, 2020, 35(4): 21-24, 27. |
Zhou H B. Comparison of concentrated phosphoric acid quality between HDH process and DH process[J]. Phosphate & Compound Fertilizer, 2020, 35(4): 21-24, 27. | |
6 | 霍云飞, 陈俊. 二水物法、半水物法、半水和二水物再结晶法湿法磷酸工艺的应用比较[J]. 磷肥与复肥, 2013, 28(4): 32-36. |
Huo Y F, Chen J. Comparison of application of dihydrate method, hemihydrate method, hemihydrate and dihydrate recrystallization method for WPA production[J]. Phosphate & Compound Fertilizer, 2013, 28(4): 32-36. | |
7 | 毛常明, 刘晶晶, 尹进华, 等. 湿法磷酸的工艺研究进展[J]. 河北化工, 2005, 28(4): 14-16, 36. |
Mao C M, Liu J J, Yin J H, et al. The development of study on wet-process phosphoric acid technology[J]. Hebei Chemical Engineering and Industry, 2005, 28(4): 14-16, 36. | |
8 | 匡国明. 湿法磷酸工艺路线的探讨[J]. 无机盐工业, 2013, 45(4): 1-4. |
Kuang G M. Discussion on process routes of wet-process phosphoric acid[J]. Inorganic Chemicals Industry, 2013, 45(4): 1-4. | |
9 | 王佳才, 李进, 李子军. 川恒化工半水湿法磷酸装置生产技术概要[J]. 硫磷设计与粉体工程, 2015(2): 38-42, 12. |
Wang J C, Li J, Li Z J. Summary of production technology for hemihydrate process phosphoric acid plant in Chuanheng chemical[J]. Sulphur Phosphorus & Bulk Materials Handling Related Engineering, 2015(2): 38-42, 12. | |
10 | 杨林, 曹建新, 刘亚明. 半水磷石膏的晶型、形貌及胶凝性能的影响因素研究[J]. 人工晶体学报, 2015, 44(9): 2460-2467. |
Yang L, Cao J X, Liu Y M. Study on the influence factor of the crystalline, morphology and cementitious properties of hemi-hydrate phosphogypsum[J]. Journal of Synthetic Crystals, 2015, 44(9): 2460-2467. | |
11 | Yang L, Cao J X, Li C Y. Enhancing the hydration reactivity of hemi-hydrate phosphogypsum through a morphology-controlled preparation technology[J]. Chinese Journal of Chemical Engineering, 2016, 24(9): 1298-1305. |
12 | Dorozhkin S V. Fundamentals of the wet-process phosphoric acid production (1): Kinetics and mechanism of the phosphate rock dissolution[J]. Industrial & Engineering Chemistry Research, 1996, 35(11): 4328-4335. |
13 | Dorozhkin S V. Fundamentals of the wet-process phosphoric acid production (2): Kinetics and mechanism of CaSO4·0.5H2O surface crystallization and coating formation[J]. Industrial & Engineering Chemistry Research, 1997, 36(2): 467-473. |
14 | 阿子华. 二水湿法磷酸工艺对矿浆细度要求试验探讨[J]. 化肥工业, 2013, 40(1): 21-23. |
A Z H. Experimental investigation of ore pulp fineness requirement for dihydrate wet-process phosphoric acid technology[J]. Chemical Fertilizer Industry, 2013, 40(1): 21-23. | |
15 | Stubenrauch C, Hamann M, Preisig N, et al. On how hydrogen bonds affect foam stability[J]. Advances in Colloid and Interface Science, 2017, 247: 435-443. |
16 | Yang L, Cao J X, Luo T. Effect of Mg2+, Al3+, and Fe3+ ions on crystallization of type α hemi-hydrated calcium sulfate under simulated conditions of hemi-hydrate process of phosphoric acid[J]. Journal of Crystal Growth, 2018, 486: 30-37. |
17 | Li H Q, Ge W, Zhang J, et al. Control foaming performance of phosphate rocks used for wet-process of phosphoric acid production by phosphoric acid[J]. Hydrometallurgy, 2020, 195: 105364. |
18 | Li X Q, Xu D H, Yang X S, et al. Influence of aluminum on morphologies and crystallization kinetics of hemihydrate calcium sulfate in the hemihydrate process of phosphoric acid production[J]. Industrial & Engineering Chemistry Research, 2022, 61(28): 10069-10077. |
19 | 陈巧珊. 硫酸钙的晶相调控、介晶制备及钙离子控释[D]. 杭州: 浙江大学, 2019. |
Chen Q S. Phase control and mesocrystal preparation of calcium sulfate and controlled release of calcium ions[D]. Hangzhou: Zhejiang University, 2019. | |
20 | 邹金鑫, 龙来早, 刘亚明, 等. 半水法湿法磷酸磷矿酸解动力学研究[J]. 广东化工, 2016, 43(17): 54-56. |
Zou J X, Long L Z, Liu Y M, et al. Kinetics of wet process phosphoric acid decomposition semi water act[J]. Guangdong Chemical Industry, 2016, 43(17): 54-56. | |
21 | Freyer D, Voigt W. Crystallization and phase stability of CaSO4 and CaSO4-based salts[J]. Chemical Monthly, 2003, 134(5): 693-719. |
22 | 梁万达, 廖莉. 新一代半水法流程湿法磷酸工艺[J]. 磷肥与复肥, 2022, 37(1): 26-29. |
Liang W D, Liao L. A new generation of hemihydrate wet-process phosphoric acid process[J]. Phosphate & Compound Fertilizer, 2022, 37(1): 26-29. | |
23 | Feldmann T, Demopoulos G P. Influence of impurities on crystallization kinetics of calcium sulfate dihydrate and hemihydrate in strong HCl-CaCl2 solutions[J]. Industrial & Engineering Chemistry Research, 2013, 52(19): 6540-6549. |
24 | Jia R Q, Wang Q, Luo T. Reuse of phosphogypsum as hemihydrate gypsum: the negative effect and content control of H3PO4 [J]. Resources, Conservation and Recycling, 2021, 174: 105830. |
25 | Hou S C, Wang J, Wang X X, et al. Effect of Mg2+ on hydrothermal formation of α-CaSO4·0.5H2O whiskers with high aspect ratios[J]. Langmuir, 2014, 30(32): 9804-9810. |
26 | 贺雷, 朱干宇, 郑光明, 等. 湿法磷酸体系磷石膏结晶过程与机理研究[J]. 无机盐工业, 2022, 54(7): 110-116. |
He L, Zhu G Y, Zheng G M, et al. Study on crystallization process and mechanism of phosphogypsum in wet process phosphoric acid system[J]. Inorganic Chemicals Industry, 2022, 54(7): 110-116. | |
27 | 钟鸥, 周华波. 半水-二水湿法磷酸生产半水料浆发黏的原因分析与解决措施[J]. 磷肥与复肥, 2011, 26(4): 28-30, 33. |
Zhong O, Zhou H B. Cause analysis on sticking hemihydrated slurry in WPA production by hemi-dihydrated and its countermeasures[J]. Phosphate & Compound Fertilizer, 2011, 26(4): 28-30, 33. | |
28 | Fu H L, Jiang G M, Wang H, et al. Solution-mediated transformation kinetics of calcium sulfate dihydrate to α-calcium sulfate hemihydrate in CaCl2 solutions at elevated temperature[J]. Industrial & Engineering Chemistry Research, 2013, 52(48): 17134-17139. |
29 | Wang Y B, Mao X Y, Chen C, et al. Effect of sulfuric acid concentration on morphology of calcium sulfate hemihydrate crystals[J]. Materials Research Express, 2020, 7(10): 105501. |
30 | Ma B G, Lu W D, Su Y, et al. Synthesis of α-hemihydrate gypsum from cleaner phosphogypsum[J]. Journal of Cleaner Production, 2018, 195: 396-405. |
31 | Ballirano P, Maras A, Meloni S, et al. The monoclinic I2 structure of bassanite, calcium sulphate hemihydrate (CaSO4·0.5H2O)[J]. European Journal of Mineralogy, 2001, 13(5): 985-993. |
32 | Mu X R, Zhu G Y, Li X, et al. Effects of impurities on CaSO4 crystallization in the Ca(H2PO4)2–H2SO4–H3PO4–H2O system[J]. ACS Omega, 2019, 4(7): 12702-12710. |
33 | Zhao W P, Gao C H, Zhang G Y, et al. Controlling the morphology of calcium sulfate hemihydrate using aluminum chloride as a habit modifier[J]. New Journal of Chemistry, 2016, 40(4): 3104-3108. |
34 | Zhang Y Y, Yang L, Liu X T, et al. Effect of HF, H2SiF6, and Al3+ ions on the crystal growth process and morphology of α-type hemihydrate calcium sulfate in phosphoric acid solution[J]. Journal of Crystal Growth, 2023, 603: 127000. |
35 | Kong B, Guan B H, Yates M Z, et al. Control of α-calcium sulfate hemihydrate morphology using reverse microemulsions[J]. Langmuir, 2012, 28(40): 14137-14142. |
36 | 李绪, 朱干宇, 宫小康, 等. 胶磷矿中杂质赋存形式及酸解过程变化[J]. 光谱学与光谱分析, 2019, 39(4): 1288-1293. |
Li X, Zhu G Y, Gong X K, et al. Occurrence of the impurities in phosphorus rock and the research of acidolysis process[J]. Spectroscopy and Spectral Analysis, 2019, 39(4): 1288-1293. | |
37 | 李绪, 朱干宇, 宫小康, 等. Si/F/K/Na杂质对硫酸钙结晶过程的影响[J]. 过程工程学报, 2018, 18(4): 815-820. |
Li X, Zhu G Y, Gong X K, et al. Effects of Si/F/K/Na impurities on the crystallization of calcium sulfate[J]. The Chinese Journal of Process Engineering, 2018, 18(4): 815-820. |
[1] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[2] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[3] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[4] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[5] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[6] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[7] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[8] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[9] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[10] | 陈国泽, 卫东, 郭倩, 向志平. 负载跟踪状态下的铝空气电池堆最优功率点优化方法[J]. 化工学报, 2023, 74(8): 3533-3542. |
[11] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[12] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[13] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[14] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[15] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 153
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 395
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||