化工学报 ›› 2017, Vol. 68 ›› Issue (1): 281-288.DOI: 10.11949/j.issn.0438-1157.20161173
李小乐1, 段伦博1, 雷梅2, 赵长遂1
收稿日期:
2016-08-22
修回日期:
2016-10-24
出版日期:
2017-01-05
发布日期:
2017-01-05
通讯作者:
段伦博
基金资助:
国家自然科学基金项目(51206023)。
LI Xiaole1, DUAN Lunbo1, LEI Mei2, ZHAO Changsui1
Received:
2016-08-22
Revised:
2016-10-24
Online:
2017-01-05
Published:
2017-01-05
Contact:
10.11949/j.issn.0438-1157.20161173
Supported by:
supported by the National Natural Science Foundation of China(51206023).
摘要:
蜈蚣草是砷(As)的高富集植物,为研究蜈蚣草燃烧过程中As的迁移规律及形态演变,在管式炉中对蜈蚣草进行了燃烧实验,实验发现:蜈蚣草中As挥发率随温度的升高先增加后减小,在500℃达到最高。500℃之前挥发率升高是由于低温区无机As的挥发;温度高于500℃时挥发率下降,是由于As的快速氧化使挥发的As3+减少以及灰中元素对As的固定作用。蜈蚣草燃烧后底灰中的水溶As主要是As5+,其含量随着温度的升高先降低再增加,800℃到达峰值,占原样品As含量的81%。在400~500℃之间,水溶As5+含量下降主要是由于As的挥发率增加;在500~700℃之间,As的固定主要为灰的物理吸附;当温度到800℃,As的固定主要为化学吸附。水溶As5+的比例在900℃时有所下降,可能是因为温度过高使生物质灰烧结,As5+无法充分溶解,使测量到的As5+含量减少。综合考虑As的回收再利用工艺,推荐800℃为蜈蚣草的最佳燃烧温度。
中图分类号:
李小乐, 段伦博, 雷梅, 赵长遂. 蜈蚣草燃烧过程中As迁移转化规律[J]. 化工学报, 2017, 68(1): 281-288.
LI Xiaole, DUAN Lunbo, LEI Mei, ZHAO Changsui. Arsenic transformation behavior during combustion of P. vittata[J]. CIESC Journal, 2017, 68(1): 281-288.
[1] | 环境保护部和国土资源部. 全国土壤污染状况调查公告[EB/OL].[2014-4-17]. http://www.mlr.gov.cn/xwdt/jrxw/201404/P020140417573876167417.pdf. Ministries of Land and Resources and Environmental Protection of China. The survey of the soil pollution in China[EB/OL].[2014-4-17]. http://www.mlr.gov.cn/xwdt/jrxw/201404/P020140417573876167417.pdf. |
[2] | 国土资源部中国地质调查局. 中国耕地地球化学调查报告[EB/OL].[2015-6]. http://www.cgs.gov.cn/UploadFiles/2015_06/26/%E4%B8%AD%E5%9B%BD%E8%80%95%E5%9C%B0%E5%9C%B0%E7%90%83%E5%8C%96%E5%AD%A6%E8%B0%83%E6%9F%A5%E6%8A%A5%E5%91%8A%EF%BC%882015%E5%B9%B4%EF%BC%89.pdf. China Geological Survey. The geochemical survey of arable land in China[EB/OL].[2015-6]. http://www.cgs.gov.cn/UploadFiles/2015_06/26/%E4%B8%AD%E5%9B%BD%E8%80%95%E5%9C%B0%E5%9C%B0%E7%90%83%E5%8C%96%E5%AD%A6%E8%B0%83%E6%9F%A5%E6%8A%A5%E5%91%8A%EF%BC%882015%E5%B9%B4%EF%BC%89.pdf. |
[3] | 环境保护部和国土资源部. 土壤污染防治行动计划[EB/OL].[2016-5-31]. http://www.gov.cn/zhengce/content/2016-05/31/content_5078377.htm. Ministries of Land and Resources and Environmental Protection of China. The soil pollution control action plan[EB/OL].[2016-5-31]. http://www.gov.cn/zhengce/content/2016-05/31/content_5078377.htm. |
[4] | ACHARYYA S K, CHAKRABORTY P, LAHIRI S, et al. Arsenic poisoning in the Ganges delta[J]. Nature, 1999, 401(6753):545. |
[5] | KARIM M M. Arsenic in groundwater and health problems in Bangladesh[J]. Water Research, 2000, 34(1):304-310. |
[6] | NAUJOKAS M F, ANDERSON B, AHSAN H, et al. The broad scope of health effects from chronic arsenic exposure:update on a worldwide public health problem[J]. Environmental Health Perspectives (Online), 2013, 121(3):295. |
[7] | YOSHIDA T, YAMAUCHI H, SUN G F. Chronic health effects in people exposed to arsenic via the drinking water:dose-response relationships in review[J]. Toxicology and Applied Pharmacology, 2004, 198(3):243-252. |
[8] | 尹彦勋, 张玉芬, 王坤. 浅论植物修复技术对土壤重金属污染的清除[J]. 天津科技, 2007, 34(1):43-44. YIN Y X, ZHANG Y F, WANG K. Discussion of the soil heavy metal pollution cleaning by phytoremediation[J]. Tianjin Science& Technology, 2007, 34(1):43-44. |
[9] | MITCH M L. Phytoextraction of toxic metals:a review of biological mechanism[J]. Journal of Environmental Quality, 2002, 31(1):109-120. |
[10] | GUPTA A K, VERMA S K, KHAN K, et al. Phytoremediation using aromatic plants:a sustainable approach for remediation of heavy metals polluted sites[J]. Environmental Science & Technology, 2013, 47(18):10115-10116. |
[11] | ALI H, KHAN E, SAJAD M A. Phytoremediation of heavy metals-concepts and applications[J]. Chemosphere, 2013, 91(7):869-881. |
[12] | CHEN T B, WEI C Y. Arsenic hyperaccumulation in some plant species in South China[C]//Proceedings of the International Conference of Soil Remediation, 2000:194-195. |
[13] | MA L Q, KOMAR K M, TU C, et al. A fern that hyperaccumulates arsenic[J]. Nature, 2001, 409(6820):579. |
[14] | CHEN T, WEI C, HUANG Z, et al. Arsenic hyperaccumulator Pteris vittata L. and its arsenic accumulation[J]. Chinese Science Bulletin, 2002, 47(11):902-905. |
[15] | CHEN T B, LIAO X Y, HUANG Z C, et al. Phytoremediation of arsenic-contaminated soil in China[M]//WILLEY N. Phytoremediation:Methods and Reviews. Humana Press, 2007:393-404. |
[16] | ZHAO F J, DUNHAM S J, MCGRATH S P. Arsenic hyperaccumulation by different fern species[J]. New Phytologist, 2002, 156(1):27-31. |
[17] | WANG H B, WONG M H, LAN C Y, et al. Uptake and accumulation of arsenic by 11 Pteris taxa from southern China[J]. Environmental Pollution, 2007, 145(1):225-233. |
[18] | LOMBI E, ZHAO F J, FUHRMANN M, et al. Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata[J]. New Phytologist, 2002, 156(2):195-203. |
[19] | TU C, MA L Q. Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake[J]. Journal of Environmental Quality, 2002, 31(2):641-647. |
[20] | 陈同斌, 张斌才, 黄泽春, 等. 超富集植物蜈蚣草在中国的地理分布及其生境特征[J]. 地理研究, 2005, 24(6):825-833. CHEN T B, ZHANG B C, HUANG C Z, et al. The geographic distribution and habitat characteristics of P. vittata, a hyperaccumulator, in China[J]. Geographical Research, 2005, 24(6):825-833. |
[21] | LIAO X Y, CHEN T B, XIE H, et al. Effect of application of P fertilizer on efficiency of As removal from As-contaminated soil using phytoremediation:field study[J]. Acta Scientiae Circumstantiae, 2004, 24(3):455-462. |
[22] | 马杰, 韩勇和, 周小勇.等.不同浸提方法对土壤及蜈蚣草中As形态浸提效果[J].现代仪器, 2012,18(2):16-19. MA J, HAN Y H, ZHOU X Y, et al. Effect of different extraction methods on arsenic speciation extraction in soil and Pteris vittata L[J]. Modern Instruments, 2012, 18(2):16-19. |
[23] | RUIZ-CHANCHO M J, LÓPEZ-SÁNCHEZ J F, SCHMEISSER E, et al. Arsenic speciation in plants growing in arsenic-contaminated sites[J]. Chemosphere, 2008, 71(8):1522-1530. |
[24] | ZHANG W, CAI Y, TU C, et al. Arsenic speciation and distribution in an arsenic hyperaccumulating plant[J]. Science of the Total Environment, 2002, 300(1):167-177. |
[25] | 肖维林. 砷超富集植物蜈蚣草产后处置及其资源化研究[D]. 南昌:南昌大学, 2007. XIAO W L. Post remediation treatment of arsenic hyperaccumulator plant Pteris vittata L. and the resourceful utilization[D]. Nanchang:Nanchang Univercity, 2007. |
[26] | SAS-NOWOSIELSKA A, KUCHARSKI R, MA?KOWSKI E, et al. Phytoextraction crop disposal-an unsolved problem[J]. Environmental Pollution, 2004, 128(3):373-379. |
[27] | XIE Q E, YAN X L, LIAO X Y, et al. The arsenic hyperaccumulator fern Pteris vittata L[J]. Environmental Science & Technology, 2009, 43(22):8488-8495. |
[28] | 潘雅妹, 廖辉伟, 周远, 等. 生态修复植物蜈蚣草中As的回收[J]. 化工环保, 2013, 33(1):63-66. PAN Y M, LIAO H Y, ZHOU Y, et al. Recovery of arsenic from hyperaccumulator Pteris vittata L[J]. Environmental Protection of Chemical Industry, 2013, 33(1):63-66. |
[29] | YAN X L, CHEN T B, LIAO X Y, et al. Arsenic transformation and volatilization during incineration of the hyperaccumulator Pteris vittata L[J]. Environmental Science & Technology, 2008, 42(5):1479-1484. |
[30] | MCMAHON C K, BUSH P B, WOOLSON E A. How much arsenic is released when CCA wood is burned[J]. Forest Products Journal, 1986, 36(11/12):45-50. |
[31] | MILLER B B, DUGWELL D R, KANDIYOTI R. Partitioning of trace elements during the combustion of coal and biomass in a suspension-firing reactor[J]. Fuel, 2002, 81(2):159-171. |
[32] | FURIMSKY E. Characterization of trace element emissions from coal combustion by equilibrium calculations[J]. Fuel Processing Technology, 2000, 63(1):29-44. |
[33] | United States Environmental Protection Agency. Determination of metals emissions from stationary sources:EPA method 29[S]. Washington, DC, 1996. |
[34] | KISSINGER H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29(11):1702-1706. |
[35] | 王树荣, 谭洪, 骆仲泱, 等. 木聚糖快速热解试验研究[J]. 浙江大学学报(工学版), 2006, 40(3):419-423. WANG S R, TAN H, LUO Z Y, et al. Experimental research on rapid pyrolysis of xylan[J]. Journal of Zhejiang University(Engineering Science), 2006, 40(3):419-423. |
[36] | RAVEENDRAN K, GANESH A, KHILAR K C. Pyrolysis characteristics of biomass and biomass components[J]. Fuel, 1996, 75(8):987-998. |
[37] | 李小乐, 孙海程, 段伦博, 等. 不同添加剂/吸附剂对循环流化床燃烧痕量元素迁移的影响规律[J]. 燃烧科学与技术, 2016, 22(1):45-49. LI X L, SUN H C, DUAN L B, et al. Influence of different additives/adsorbents on migration of trace elements in circulating fluidized bed combustion[J]. Journal of Combustion Science and Technology, 2016, 22(1):45-49. |
[38] | REED G P, DUGWELL D R, KANDIYOTI R. Control of trace elements in gasification:distribution to the output streams of a pilot scale gasifier[J]. Energy & Fuels, 2001, 15(4):794-800. |
[39] | RATAFIA-BROWN J A. Overview of trace element partitioning in flames and furnaces of utility coal-fired boilers[J]. Fuel Processing Technology, 1994, 39(1/2/3):139-157. |
[40] | CUYPERS F, HELSEN L. Pyrolysis of chromated copper arsenate (CCA) treated wood waste at elevated pressure:influence of particle size, heating rate, residence time, temperature and pressure[J]. Journal of Analytical and Applied Pyrolysis, 2011, 92(1):111-122. |
[41] | VASSILEVA E, DO?EKALOVÁ H, BAETEN H, et al. Revisitation of mineralization modes for arsenic and selenium determinations in environmental samples[J]. Talanta, 2001, 54(1):187-196. |
[42] | CHESWORTH S, YANG G, CHANG D P Y, et al. The fate of arsenic in a laminar diffusion flame[J]. Combustion and Flame, 1994, 98(3):259-266. |
[43] | 潘志明, 邓天龙. 砷污染土壤的蜈蚣草修复研究进展[J]. 土壤, 2007, 39(3):341-346. PAN Z M, DENG T L. The research progress of remediation of As contaminated soil by P. vittata[J]. Soils, 2007, 39(3):341-346. |
[44] | HELSEN L, VAN DEN BULCK E, VAN BAEL M K, et al. Arsenic release during pyrolysis of CCA treated wood waste:current state of knowledge[J]. Journal of Analytical and Applied Pyrolysis, 2003, 68(3):613-633. |
[45] | CHESWORTH S, YANG G, CHANG D P Y, et al. The fate of arsenic in a laminar diffusion flame[J]. Combustion and Flame, 1994, 98(3):259-266. |
[46] | BARIN I, SAUERT F, SCHULTZE-RHONHOF E, et al. Thermochemical Data of Pure Substance[M]. Weinheim:VCH, 1989. |
[47] | WU C Y, BISWAS P. An equilibrium analysis to determine the speciation of metals in an incinerator[J]. Combustion and Flame, 1993, 93(1):31-40. |
[48] | WEAST R C. Handbook of chemistry and physics[J]. The American Journal of the Medical Sciences, 1969, 257(6):423. |
[49] | HATA T, BRONSVELD P M, VYSTAVEL T, et al. Electron microscopic study on pyrolysis of CCA (chromium, copper and arsenic oxide)-treated wood[J]. Journal of Analytical and Applied Pyrolysis, 2003, 68(3):635-643. |
[50] | CHEN D, HU H, XU Z, et al. Findings of proper temperatures for arsenic capture by CaO in the simulated flue gas with and without SO2[J]. Chemical Engineering Journal, 2015, 267:201-206. |
[51] | 张军营, 任德贻, 钟秦, 等. CaO对煤中砷挥发性的抑制作用[J]. 燃料化学学报, 2000, 28(3):198-200. ZHANG J Y, REN D Y, ZHONG Q, et al. Inhibition effect of CaO on the arsenic volatility of coal[J]. Journal of Fuel Chemistry and Technology, 2000, 28(3):198-200. |
[52] | 赖喜锐, 周肇秋, 刘华财,等. 生物质灰烧结熔融规律实验研究[J]. 农业机械学报, 2016, 47(3):158-166. LAI X R, ZHOU Z Q, LIU H C, et al. Experiment study of biomass ash sintering and melting[J]. Transactions of the Chinese Society of Agricultural Machinery, 2016, 47(3):158-166. |
[1] | 吴曦, 区祖迪, 张鑫杰, 徐士鸣, 朱晓静. HFO-1243zf爆燃特性实验研究[J]. 化工学报, 2023, 74(S1): 346-352. |
[2] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[3] | 李晨曦, 刘永峰, 张璐, 刘海峰, 宋金瓯, 何旭. O2/CO2氛围下正庚烷的燃烧机理研究[J]. 化工学报, 2023, 74(5): 2157-2169. |
[4] | 禹进, 余彬彬, 蒋新生. 一种基于虚拟组分的燃烧调控化学作用量化及分析方法研究[J]. 化工学报, 2023, 74(3): 1303-1312. |
[5] | 郑少杰, 王建斌, 胡激江, 李伯耿, 袁文博, 王宗, 姚臻. 单体组成切换法调控聚丙烯/丁烯合金的结构与性能[J]. 化工学报, 2023, 74(2): 904-915. |
[6] | 孙嘉辰, 裴春雷, 陈赛, 赵志坚, 何盛宝, 巩金龙. 化学链低碳烷烃氧化脱氢技术进展[J]. 化工学报, 2023, 74(1): 205-223. |
[7] | 王永倩, 王平, 程康, 毛晨林, 刘文锋, 尹智成, Ferrante Antonio. 氨气/甲烷贫预混旋转湍流火焰稳定性及NO生成[J]. 化工学报, 2022, 73(9): 4087-4094. |
[8] | 袁妮妮, 郭拓, 白红存, 何育荣, 袁永宁, 马晶晶, 郭庆杰. 化学链燃烧过程Fe2O3/Al2O3载氧体表面CH4反应:ReaxFF-MD模拟[J]. 化工学报, 2022, 73(9): 4054-4061. |
[9] | 杨明辉, 刘晓月, 邓晓刚, 廖明燕, 侯春望. 基于加权概率CVDA的动态化工系统微小故障检测[J]. 化工学报, 2022, 73(9): 3963-3972. |
[10] | 唐恺鸿, 何晓峰, 徐桂秋, 于洋, 刘啸凤, 葛铁军, 张爱玲. 酚醛泡沫的燃烧行为及阻燃研究进展[J]. 化工学报, 2022, 73(8): 3483-3500. |
[11] | 刘新华, 韩振南, 韩健, 梁斌, 张楠, 胡善伟, 白丁荣, 许光文. 基于热解与燃烧反应重构的低NO x 解耦燃烧原理与技术[J]. 化工学报, 2022, 73(8): 3355-3368. |
[12] | 李治东, 万佳琪, 刘莹, 唐艺溪, 刘威, 宋忠贤, 张学军. 一步法合成α-MnO2/β-MnO2催化剂及其对甲苯催化氧化的性能研究[J]. 化工学报, 2022, 73(8): 3615-3624. |
[13] | 何聪, 钟文琪, 周冠文, 陈曦. 高海拔地区水泥生料悬浮炉分解特性研究[J]. 化工学报, 2022, 73(5): 2120-2129. |
[14] | 李雪, 东明, 张璜, 谢俊. 潮湿环境下微尺度颗粒撞击平板的动力学研究[J]. 化工学报, 2022, 73(5): 1940-1946. |
[15] | 张宇伦, 陈长坤, 雷鹏. 不同可燃液体层高度下浸润多孔介质砂床组合燃烧特性实验研究[J]. 化工学报, 2022, 73(4): 1826-1833. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 250
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 244
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||