1 |
Pan W G, Shi C L, Li F X, et al. The emission control technology of PM2.5 from coal-fired plant[J]. Advanced Materials Research, 2013, 864/865/866/867: 1346-1351.
|
2 |
Zhao Y, Feng L H, Wang Y W, et al. Study on pollution characterization and source apportionment of daytime and nighttime PM 2.5 samples in an urban residential community in different weather conditions[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 104(5): 673-681.
|
3 |
耿珺, 柳朝晖, 张丰豪, 等. 燃煤微细颗粒迁移过程的动力学[J]. 化工学报, 2006, 57(2): 292-299.
|
|
Geng J, Liu Z H, Zhang F H, et al. Dynamics of behavior of fine particulate matter in pulverized coal combustion[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(2): 292-299.
|
4 |
Shang Y D, Inthavong K. Numerical assessment of ambient inhaled micron particle deposition in a human nasal cavity[J]. Experimental and Computational Multiphase Flow, 2019, 1(2): 109-115.
|
5 |
Wall S, John W, Wang H C, et al. Measurements of kinetic energy loss for particles impacting surfaces[J]. Aerosol Science and Technology, 1990, 12(4): 926-946.
|
6 |
Gibson L M, Gopalan B, Pisupati S V, et al. Image analysis measurements of particle coefficient of restitution for coal gasification applications[J]. Powder Technology, 2013, 247: 30-43.
|
7 |
Li S F, Xie J, Dong M, et al. Rebound characteristics for the impact of SiO2 particle onto a flat surface at different temperatures[J]. Powder Technology, 2015, 284: 418-428.
|
8 |
Dong M, Mei Y K, Li X, et al. Experimental measurement of the normal coefficient of restitution of micro-particles impacting on plate surface in different humidity[J]. Powder Technology, 2018, 335: 250-257.
|
9 |
韩健, 东明, 李素芬, 等. 飞灰颗粒与平板表面撞击过程的实验研究[J]. 化工学报, 2013, 64(9): 3161-3167.
|
|
Han J, Dong M, Li S F, et al. Experimental research on fly ash particles impacting planar surface[J]. CIESC Journal, 2013, 64(9): 3161-3167.
|
10 |
Hertz H. Miscellaneous Papers[M]. Macmillan, 1896.
|
11 |
Johnson K L, Kendall K, Roberts A D. Surface energy and the contact of elastic solids[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1971, 324(1558): 301-313.
|
12 |
Derjaguin B V, Muller V M, Toporov Y P. Effect of contact deformations on the adhesion of particles[J]. Journal of Colloid and Interface Science, 1975, 53(2): 314-326.
|
13 |
Brach R M, Dunn P F. Macrodynamics of microparticles[J]. Aerosol Science and Technology, 1995, 23(1): 51-71.
|
14 |
Cundall P A, Strack O D L. Discussion: a discrete numerical model for granular assemblies[J]. Géotechnique, 1980, 30(3): 331-336.
|
15 |
Santos E G, da Silva Carvalho L C, Mesquita A L A, et al. Discrete element modeling of non-spherical particles using a spherical shape[J]. REM - International Engineering Journal, 2020, 73(3): 361-369.
|
16 |
侯勇俊, 祝敬涛, 李华川, 等. 均衡运动旋转振动筛DEM数值模拟[J]. 化工学报, 2021, 72(5): 2706-2717.
|
|
Hou Y J, Zhu J T, Li H C, et al. DEM numerical simulation on rotary vibrating screen under balanced motion[J]. CIESC Journal, 2021, 72(5): 2706-2717.
|
17 |
de Cachinho Cordeiro I M, Liu H R, Yuen A C Y, et al. Numerical assessment of LES subgrid-scale turbulence models for expandable particles in fire suppression[J]. Experimental and Computational Multiphase Flow, 2021: 1-12.
|
18 |
Chen S, Li S Q, Yang M M. Sticking/rebound criterion for collisions of small adhesive particles: effects of impact parameter and particle size[J]. Powder Technology, 2015, 274: 431-440.
|
19 |
Zhang H, Li S Q. DEM simulation of wet granular-fluid flows in spouted beds: numerical studies and experimental verifications[J]. Powder Technology, 2017, 318: 337-349.
|
20 |
Liu W W, Chen S, Li S Q. Random adhesive loose packings of micron-sized particles under a uniform flow field[J]. Powder Technology, 2018, 335: 70-76.
|
21 |
Liu W W, Li S Q, Baule A, et al. Adhesive loose packings of small dry particles[J]. Soft Matter, 2015, 11(32): 6492-6498.
|
22 |
Liu G Q, Li S Q, Yao Q. A JKR-based dynamic model for the impact of micro-particle with a flat surface[J]. Powder Technology, 2011, 207(1/2/3): 215-223.
|
23 |
Dörmann M, Schmid H J. Simulation of capillary bridges between particles[J]. Procedia Engineering, 2015, 102: 14-23.
|
24 |
Fisher R A. On the capillary forces in an ideal soil[J]. The Journal of Agricultural Science, 1926, 16(3): 492-505.
|
25 |
Pakarinen O H, Foster A S, Paajanen M, et al. Towards an accurate description of the capillary force in nanoparticle-surface interactions[J]. Modelling and Simulation in Materials Science and Engineering, 2005, 13(7): 1175-1186.
|
26 |
Xiao X D, Qian L M. Investigation of humidity-dependent capillary force[J]. Langmuir, 2000, 16(21): 8153-8158.
|
27 |
Dong M, Li X, Mei Y K, et al. Experimental and theoretical analyses on the effect of physical properties and humidity of fly ash impacting on a flat surface[J]. Journal of Aerosol Science, 2018, 117: 85-99.
|
28 |
Hunt K H, Crossley F R E. Coefficient of restitution interpreted as damping in vibroimpact[J]. Journal of Applied Mechanics, 1975, 42(2): 440-445.
|
29 |
Antonyuk S, Heinrich S, Deen N, et al. Influence of liquid layers on energy absorption during particle impact[J]. Particuology, 2009, 7(4): 245-259.
|
30 |
Kan H, Nakamura H, Watano S. Numerical simulation of particle-particle adhesion by dynamic liquid bridge[J]. Chemical Engineering Science, 2015, 138: 607-615.
|
31 |
Butt H J, Kappl M. Normal capillary forces[J]. Advances in Colloid and Interface Science, 2009, 146(1/2): 48-60.
|