化工学报 ›› 2018, Vol. 69 ›› Issue (1): 309-316.DOI: 10.11949/j.issn.0438-1157.20171097
沈佳妮1,2, 贺益君1,2, 马紫峰1,2
收稿日期:
2017-08-14
修回日期:
2017-10-13
出版日期:
2018-01-05
发布日期:
2018-01-05
通讯作者:
马紫峰
基金资助:
国家重点基础研究发展计划项目(2014CB239703);国家重点研发计划项目(2016YFB0901505);国家自然科学基金项目(21576163,21336003)。
SHEN Jiani1,2, HE Yijun1,2, MA Zifeng1,2
Received:
2017-08-14
Revised:
2017-10-13
Online:
2018-01-05
Published:
2018-01-05
Contact:
10.11949/j.issn.0438-1157.20171097
Supported by:
supported by the National Basic Research Program of China (2014CB239703), the National Key Research and Development Program of China (2016YFB0901505) and the National Natural Science Foundation of China (21576163, 21336003).
摘要:
电池管理系统是保证锂离子电池高效、安全运行的重要手段。在电池管理系统功能中,电池状态估计,特别是荷电状态(state of charge,SOC)估计和健康状态(state of health,SOH)估计至关重要。SOC/SOH不仅与全生命周期内电池安全运行直接相关,也是其他功能有效实现的必要前提。本文围绕模型类电池状态估计方法,综述了国内外在锂离子电池模型构建、SOC及SOH估计方法方面的研究进展;指出了模型类状态估计方法存在的难点和局限,提出了今后研究重点。
中图分类号:
沈佳妮, 贺益君, 马紫峰. 基于模型的锂离子电池SOC及SOH估计方法研究进展[J]. 化工学报, 2018, 69(1): 309-316.
SHEN Jiani, HE Yijun, MA Zifeng. Progress of model based SOC and SOH estimation methods for lithium-ion battery[J]. CIESC Journal, 2018, 69(1): 309-316.
[1] | DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium polymer insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6):1526-1533. |
[2] | NEWMAN J, THOMAS K E, HAFEZI H, et al. Modeling of lithium-ion batteries[J]. Journal of Power Sources, 2003, 119/120/121:838-843. |
[3] | GUO M, SIKHA G, WHITE R E. Single-particle model for a lithium-ion cell:thermal behavior[J]. Journal of the Electrochemical Society, 2011, 158(2):A122. |
[4] | CAI L, WHITE R E. An efficient electrochemical-thermal model for a lithium-ion cell by using the proper orthogonal decomposition method[J]. Journal of the Electrochemical Society, 2010, 157(11):A1188. |
[5] | JIANG Z Y, QU Z G, ZHOU L, et al. A microscopic investigation of ion and electron transport in lithium-ion battery porous electrodes using the lattice Boltzmann method[J]. Applied Energy, 2017, 194:530-539. |
[6] | CAI L, WHITE R E. Mathematical modeling of a lithium ion battery with thermal effects in COMSOL Inc. Multiphysics (MP) software[J]. Journal of Power Sources, 2011, 196(14):5985-5989. |
[7] | TANIM T R, RAHN C D, WANG C Y. A temperature dependent, single particle, lithium ion cell model including electrolyte diffusion[J]. Journal of Dynamic Systems, Measurement, and Control, 2014, 137(1):011005. |
[8] | DE S, SUTHAR B, RIFE D, et al. Efficient reformulation of solid phase diffusion in electrochemical-mechanical coupled models for lithium-ion batteries:effect of intercalation induced stresses[J]. Journal of the Electrochemical Society, 2013, 160(10):A1675-A1683. |
[9] | SUTHAR B, NORTHROP P W C, BRAATZ R D, et al. Optimal charging profiles with minimal intercalation-induced stresses for lithium-ion batteries using reformulated pseudo 2-dimensional models[J]. Journal of the Electrochemical Society, 2014, 161(11):F3144-F3155. |
[10] | GOLMON S, MAUTE K, DUNN M L. Numerical modeling of electrochemical-mechanical interactions in lithium polymer batteries[J]. Computers & Structures, 2009, 87(23/24):1567-1579. |
[11] | 牛利勇, 时玮, 姜久春, 等. 纯电动汽车用磷酸铁锂电池的模型参数分析[J]. 汽车工程, 2013, 35(2):127-132. NIU L Y, SHI W, JIANG J C, et al. Model parameters analysis of lithium iron phosphate battery for electric vehicle[J]. Automotive Engineering, 2013, 35(2):127-132. |
[12] | ANDRE D, MEILER M, STEINER K, et al. Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy(I):Experimental investigation[J]. Journal of Power Sources, 2011, 196(12):5334-5341. |
[13] | 张文华, 吴三毛, 刘平, 等. C/LiFePO4动力电池电化学交流阻抗谱的研究[J]. 电源技术, 2015, 39(9):1838-1842. ZHANG W H, WU S M, LIU P, et al. Study on EIS of C/LiFePO4 power battery[J]. Chinese Journal of Power Sources, 2015, 39(9):1838-1842. |
[14] | 贾玉健, 解大, 顾羽洁, 等. 电动汽车电池等效电路模型的分类和特点[J]. 电力与能源, 2011, 32(6):516-521. JIA Y J, JIE D, GU Y J, et al. Classification and characteristics of equivalent circuit models for EV's battery[J]. Power & Energy, 2011, 32(6):516-521. |
[15] | HU X, LI S, PENG H. A comparative study of equivalent circuit models for Li-ion batteries[J]. Journal of Power Sources, 2012, 198:359-367. |
[16] | LIAW B Y, NAGASUBRAMANIAN G, JUNGST R G, et al. Modeling of lithium ion cells-A simple equivalent-circuit model approach[J]. Solid State Ionics, 2004, 175(1):835-839. |
[17] | CHEN M, RINCON-MORA G A. Accurate electrical battery model capable of predicting runtime and I-V performance[J]. IEEE Transactions on Energy Conversion, 2006, 21(2):504-511. |
[18] | ZHANG J C, CI S, SHARIF H, et al. An enhanced circuit-based model for single-cell battery[C]//2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC). 2010:672-675. |
[19] | KIM T, QIAO W. A hybrid battery model capable of capturing dynamic circuit characteristics and nonlinear capacity effects[J]. IEEE Transactions on Energy Conversion, 2011, 26(4):1172-1180. |
[20] | ERDINC O, VURAL B, UZUNOGLU M. A dynamic lithium-ion battery model considering the effects of temperature and capacity fading[C]//2009 International Conference on Clean Electrical Power (ICCEP 2009):Vols 1 and 2. 2009:374-377. |
[21] | SHEN J N, HE Y J, MA Z F. Simultaneous model selection and parameter estimation for lithium-ion batteries:a sequential MINLP solution approach[J]. AIChE Journal, 2016, 62(1):78-89. |
[22] | 项宇, 刘春光, 苏建强, 等. 基于BP神经网络的动力电池SOC预测模型与优化[J]. 电源技术, 2013, 37(6):963-965+986. XIANG Y, LIU C G, SU J Q, et al. Forecast model of battery state of charge based on BP network and its optimization[J]. Chinese Journal of Power Sources, 2013, 37(6):963-965+986. |
[23] | GREWAL S. A novel technique for modelling the state of charge of lithium ion batteries using artificial neural networks[C]//INTELEC 2001. 2001:174-179. |
[24] | DANG X J, YAN L, XU K, et al. Open-circuit voltage-based state of charge estimation of lithium-ion battery using dual neural network fusion battery model[J]. Electrochimica Acta, 2016, 188:356-366. |
[25] | NUHIC A, TERZIMEHIC T, SOCZKA-GUTH T, et al. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods[J]. Journal of Power Sources, 2013, 239:680-688. |
[26] | ANTON J C A, NIETO P J G, JUEZ F J D, et al. Battery state-of-charge estimator using the SVM technique[J]. Applied Mathematical Modelling, 2013, 37(9):6244-6253. |
[27] | FLEISCHER C, WAAG W, BAI Z, et al. On-line self-learning time forward voltage prognosis for lithium-ion batteries using adaptive neuro-fuzzy inference system[J]. Journal of Power Sources, 2013, 243:728-749. |
[28] | 李军, 邹发明, 涂雄, 等. 基于模糊控制策略的PHEV仿真研究[J]. 重庆交通大学学报(自然科学版), 2013, 32(2):329-334. LI J, ZOU F M, TU X, et al. Simulation research on PHEV based on fuzzy logic control strategies[J]. Journal of Chongqing Jiaotong University (Natural Science)[J]. 2013, 32(2):329-334. |
[29] | HANNAN M A, LIPU M S H, HUSSAIN A, et al. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications:challenges and recommendations[J]. Renewable and Sustainable Energy Reviews, 2017, 78:834-854. |
[30] | NG K S, MOO C S, CHEN Y P, et al. Enhanced coulomb counting method for estimating state-of-chargeand state-of-health of lithium-ion batteries[J]. Applied Energy, 2009, 86(9):1506-1511. |
[31] | AYLOR J H, THIEME A, JOHNSO B. A battery state-of-charge indicator for electric wheelchairs[J]. IEEE Transactions on Industrial Electronics, 1992, 39(5):398-409. |
[32] | XING Y, HE W, PECHT M, et al. State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures[J]. Applied Energy, 2014, 113:106-115 |
[33] | BIZERAY A M, ZHAO S, DUNCAN S R, et al. Lithium-ion battery thermal-electrochemical model-based state estimation using orthogonal collocation and a modified extended Kalman filter[J]. Journal of Power Sources, 2015, 296:400-412. |
[34] | TULSYAN A, TSAI Y, GOPALUNI R B, et al. State-of-charge estimation in lithium-ion batteries:a particle filter approach[J]. Journal of Power Sources, 2016, 331:208-223. |
[35] | HAN X, OUYANG M, LU L, et al. Simplification of physics-based electrochemical model for lithium ion battery on electric vehicle (Part Ⅱ):Pseudo-two-dimensional model simplification and state of charge estimation[J]. Journal of Power Sources, 2015, 278:814-825. |
[36] | 刘树林, 崔纳新, 李岩, 等. 基于分数阶理论的车用锂离子电池建模及荷电状态估计[J]. 电工技术学报, 2017, 32(4):189-195. LIU S L, CUI N X, LI Y, et al. Modeling and state of charge estimation of lithium-ion battery based on theory of fractional order for electric vehicle[J]. Transactions of China Electrotechnical Society, 2017, 32(4):189-195. |
[37] | PLETT G L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs(Part 1):Background[J]. Journal of Power Sources, 2004, 134(2):252-261. |
[38] | 刘晓春, 杨惠珍, 朱良, 等. 锂电池的电量估计仿真研究[J]. 电源技术, 2017, 41(3):367-369+452. LIU X C, YANG H Z, ZHU L, et al. Behavior simulation and SOC estimation method for Li-ion batteries[J]. Chinese Journal of Power Sources, 2017, 41(3):367-369+452. |
[39] | POLA D A, NAVARRETE H F, ORCHARD M E, et al. Particle-filtering-based discharge time prognosis for lithium-ion batteries with a statistical characterization of use profiles[J]. IEEE Transactions on Reliability, 2015, 64(2):710-720. |
[40] | SHAO S, BI J, YANG F, et al. On-line estimation of state-of-charge of Li-ion batteries in electric vehicle using the resampling particle filter[J]. Transportation Research Part D:Transport and Environment, 2014, 32:207-217. |
[41] | 孙冬, 陈息坤. 基于离散滑模观测器的锂电池荷电状态估计[J]. 中国电机工程学报, 2015, 35(1):185-191. SUN D, CHEN X K. Charge state estimation of Li-ion batteries based on discrete-time sliding mode observers[J]. Proceedings of the Chinese Society for Electrical Engineering, 2015, 35(1):185-191. |
[42] | KIM I S. The novel state of charge estimation method for lithium battery using sliding mode observer[J]. Journal of Power Sources, 2006, 163(1):584-590. |
[43] | YU Q, XIONG R, LIN C. Online estimation of state-of-charge based on the H infinity and unscented Kalman filters for lithium ion batteries[J]. Energy Procedia, 2017, 105:2791-2796. |
[44] | 蔡信, 李波, 汪宏华, 等. 基于神经网络模型的动力电池SOC估计研究[J]. 机电工程, 2015, 32(1):128-132. CAI X, LI B, WANG H H, et al. Estimation of state-of-charge for electric vehicle power battery with neural network method[J]. Journal of Mechanical & Electrical Engineering, 2015, 32(1):128-132. |
[45] | KANG L, ZHAO X, MA J. A new neural network model for the state-of-charge estimation in the battery degradation process[J]. Applied Energy, 2014, 121:20-27. |
[46] | 于洋, 纪世忠, 魏克新. 基于LS-SVM算法动力电池SOC估计方法的研究[J]. 电源技术, 2012, 36(3):349-351+370. YU Y, JI S Z, WEI K X. Estimating method for power battery state of charge based on LS-SVM[J]. Chinese Journal of Power Sources, 2012, 36(3):349-351+370. |
[47] | SINGH P, VINJAMURI R, WANG X Q, et al. Design and implementation of a fuzzy logic-based state-of-charge meter for Li-ion batteries used in portable defibrillators[J]. Journal of Power Sources, 2006, 162(2):829-836. |
[48] | PLETT G L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs (Part 2):Modeling and identification[J]. Journal of Power Sources, 2004, 134(2):262-276. |
[49] | PLETT G L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs (Part 3):State and parameter estimation[J]. Journal of Power Sources, 2004, 134(2):277-292. |
[50] | HE W, WILLIARD N, CHEN C, et al. State of charge estimation for electric vehicle batteries using unscented Kalman filtering[J]. Microelectronics Reliability, 2013, 53(6):840-847. |
[51] | TIAN Y, XIA B, SUN W, et al. A modified model based state of charge estimation of power lithium-ion batteries using unscented Kalman filter[J]. Journal of Power Sources, 2014, 270:619-626. |
[52] | PLETT G L. Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs[J]. Journal of Power Sources, 2006, 161(2):1369-1384. |
[53] | SEPASI S, GHORBANI R, LIAW B Y. SOC estimation for aged lithium-ion batteries using model adaptive extended Kalman filter[C]//Transportation Electrification Conference and Expo (ITEC), 2013 IEEE. IEEE, 2013:1-6. |
[54] | HE H, XIONG R, ZHANG X, et al. State-of-charge estimation of the lithium-ion battery using an adaptive extended Kalman filter based on an improved Thevenin model[J]. IEEE Transactions on Vehicular Technology, 2011, 60(4):1461-1469. |
[55] | HU C, YOUN B D, CHUNG J. A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation[J]. Applied Energy, 2012, 92:694-704. |
[56] | 顾亚雄, 张友近. 基于双卡尔曼滤波的锂电池SOC估算[J]. 电源技术, 2016, 40(5):986-989. GU Y X, ZHANG Y J. Estimation of state of charge of lithium-ion battery based on dual extend Kalman filter[J]. Chinese Journal of Power Sources, 2016, 40(5):986-989. |
[57] | 戴海峰, 孙泽昌, 魏学哲. 利用双卡尔曼滤波算法估计电动汽车用锂离子动力电池的内部状态[J]. 机械工程学报, 2009, 45(6):95-101. DAI H F, SUN Z C, WEI X Z. Estimation of internal states of power lithium-ion batteries used on electric vehicles by dual extended Kalman filter[J]. Chinese Journal of Mechanical Engineering, 2009, 45(6):95-101. |
[58] | SHEN J N, HE Y J, MA Z F, et al. Online state of charge estimation of lithium-ion batteries:a moving horizon estimation approach[J]. Chemical Engineering Science, 2016, 154:42-53. |
[59] | DUONG V H, BASTAWROUS H A, LIM K C, et al. Online state of charge and model parameters estimation of the LiFePO4 battery in electric vehicles using multiple adaptive forgetting factors recursive least-squares[J]. Journal of Power Sources, 2015, 296:215-224. |
[60] | REZVANIZANIANI S M, LIU Z, CHEN Y, et al. Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility[J]. Journal of Power Sources, 2014, 256:110-124. |
[61] | HAN X B, OUYANG M G, LU L G, et al. A comparative study of commercial lithium ion battery cycle life in electrical vehicle:aging mechanism identification[J]. Journal of Power Sources, 2014, 251:38-54. |
[62] | FU R J, CHOE S Y, AGUBRA V, et al. Modeling of degradation effects considering side reactions for a pouch type Li-ion polymer battery with carbon anode[J]. Journal of Power Sources, 2014, 261:120-135. |
[63] | SCHMIDT A P, BITZER M, IMNRE A W, et al. Model-based distinction and quantification of capacity loss and rate capability fade in Li-ion batteries[J]. Journal of Power Sources, 2010, 195(22):7634-7638. |
[64] | HU X S, LI S E, JIA Z Z, et al. Enhanced sample entropy-based health management of Li-ion battery for electrified vehicles[J]. Energy, 2014, 64:953-960. |
[65] | ZHENG Y J, HAN X B, LU L G, et al. Lithium ion battery pack power fade fault identification based on Shannon entropy in electric vehicles[J]. Journal of Power Sources, 2013, 223:136-146. |
[66] | SAHA B, GOEBEL K, POLL S, et al. Prognostics methods for battery health monitoring using a Bayesian framework[J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58(2):291-296. |
[67] | 姜久春, 马泽宇, 李雪, 等. 基于开路电压特性的动力电池健康状态诊断与估计[J]. 北京交通大学学报, 2016, 40(4):92-98. JIANG J C, MA Z Y, LI X, et al. State of health diagnosis and estimation of power lithium-ion batteries based on open circuit voltage characteristic[J]. Journal of Beijing Jiaotong University, 2016, 40(4):92-98. |
[68] | REZVANIZANIANI S M, LIU Z, CHEN Y, et al. Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility[J]. Journal of Power Sources, 2014, 256:110-124. |
[69] | REMMLINGER J, BUCHHOLZ M, MEILER M, et al. State-of-health monitoring of lithium-ion batteries in electric vehicles by on-board internal resistance estimation[J]. Journal of Power Sources, 2011, 196(12):5357-5363. |
[70] | BUSCHEL P, TROLTZSCH U, KANOUN O. Use of stochastic methods for robust parameter extraction from impedance spectra[J]. Electrochimica Acta, 2011, 56(23):8069-8077. |
[71] | EDDAHECH A, BRIAT O, BERTRAND N, et al. Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks[J]. International Journal of Electrical Power & Energy Systems, 2012, 42(1):487-494. |
[72] | 张金, 高安同, 韩裕生, 等. 一种基于粒子滤波的锂离子电池健康预测算法[J]. 电源技术, 2015, 39(7):1377-1380. ZHANG J, GAO A T, HAN Y S, et al. A health prognostic algorithm for Li-ion battery based on particle filter[J]. Chinese Journal of Power Sources, 2015, 39(7):1377-1380. |
[73] | MIAO Q, XIE L, CUI H, et al. Remaining useful life prediction of lithium-ion battery with unscented particle filter technique[J]. Microelectronics Reliability, 2013, 53(6):805-810. |
[74] | LEE S, KIM J, LEE J, et al. State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge[J]. Journal of Power Sources, 2008, 185(2):1367-1373. |
[75] | LIN H T, LIANG T J, CHEN S M. Estimation of battery state of health using probabilistic neural network[J]. IEEE Transactions on Industrial Informatics, 2013, 9(2):679-685. |
[76] | SBARUFATTI C, CORBETTA M, GIGLIO M, et al. Adaptive prognosis of lithium-ion batteries based on the combination of particle filters and radial basis function neural networks[J]. Journal of Power Sources, 2017, 344:128-140. |
[77] | YOU G, PARK S, OH D. Real-time state-of-health estimation for electric vehicle batteries:a data-driven approach[J]. Applied Energy, 2016, 176:92-103. |
[78] | KLASS V, BEHM M, LINDBERGH G. A support vector machine-based state-of-health estimation method for lithium-ion batteries under electric vehicle operation[J]. Journal of Power Sources, 2014, 270:262-272. |
[79] | ZENATI A, DESPREZ P, RAZIK H, et al. A methodology to assess the state of health of lithium-ion batteries based on the battery's parameters and a fuzzy logic system[C]//Electric Vehicle Conference (IEVC), 2012 IEEE International. IEEE, 2012:1-6. |
[80] | HE Y J, SHEN J N, SHEN J F, et al. State of health estimation of lithium-ion batteries:a multiscale Gaussian process regression modeling approach[J]. AIChE Journal, 2015, 61(5):1589-1600. |
[1] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[2] | 王志龙, 杨烨, 赵真真, 田涛, 赵桐, 崔亚辉. 搅拌时间和混合顺序对锂离子电池正极浆料分散特性的影响[J]. 化工学报, 2023, 74(7): 3127-3138. |
[3] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[4] | 李靖, 沈聪浩, 郭大亮, 李静, 沙力争, 童欣. 木质素基碳纤维复合材料在储能元件中的应用研究进展[J]. 化工学报, 2023, 74(6): 2322-2334. |
[5] | 肖忠良, 尹碧露, 宋刘斌, 匡尹杰, 赵亭亭, 刘成, 袁荣耀. 废旧锂离子电池回收工艺研究进展及其安全风险分析[J]. 化工学报, 2023, 74(4): 1446-1456. |
[6] | 杜江龙, 杨雯棋, 黄凯, 练成, 刘洪来. 复合相变材料/空冷复合式锂离子电池模块散热性能[J]. 化工学报, 2023, 74(2): 674-689. |
[7] | 程伟江, 汪何琦, 高翔, 李娜, 马赛男. 锂离子电池硅基负极电解液成膜添加剂的研究进展[J]. 化工学报, 2023, 74(2): 571-584. |
[8] | 钟磊, 邱学青, 张文礼. 木质素衍生炭在碱金属离子电池负极中的研究进展[J]. 化工学报, 2022, 73(8): 3369-3380. |
[9] | 胡华坤, 薛文东, 霍思达, 李勇, 蒋朋. 锂离子电池电解液SEI成膜添加剂的研究进展[J]. 化工学报, 2022, 73(4): 1436-1454. |
[10] | 杨伟, 王昱杰, 方凯斌, 邹汉波, 陈胜洲, 刘自力. Co-Mn比例调控对LiNi0.8Co0.10-y Mn0.05+y Al0.05O2材料性能影响探究[J]. 化工学报, 2022, 73(12): 5615-5624. |
[11] | 贾理男, 杜一博, 郭邦军, 张希. 基于硫化物电解质的全固态锂离子电池负极研究进展[J]. 化工学报, 2022, 73(12): 5289-5304. |
[12] | 王朋朋, 贾洋刚, 邵霞, 程婕, 冒爱琴, 檀杰, 方道来. K+掺杂尖晶石型(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4高熵氧化物负极材料制备与储锂性能研究[J]. 化工学报, 2022, 73(12): 5625-5637. |
[13] | 周弋惟, 陈卓, 徐建鸿. 湿法冶金回收废旧锂电池正极材料的研究进展[J]. 化工学报, 2022, 73(1): 85-96. |
[14] | 王慧艳, 陈怡沁, 周静红, 曹约强, 周兴贵. 锂离子电池正极涂层孔隙结构优化的数值模拟[J]. 化工学报, 2022, 73(1): 376-383. |
[15] | 梁坤峰, 王莫然, 高美洁, 吕振伟, 徐红玉, 董彬, 高凤玲. 纯电动车集成热管理系统性能的热力学分析[J]. 化工学报, 2021, 72(S1): 494-502. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||