化工学报 ›› 2018, Vol. 69 ›› Issue (1): 317-326.DOI: 10.11949/j.issn.0438-1157.20171186
芮泽宝1,3, 纪红兵2,3
收稿日期:
2017-08-29
修回日期:
2017-10-28
出版日期:
2018-01-05
发布日期:
2018-01-05
通讯作者:
纪红兵
基金资助:
国家自然科学基金项目(21776322,21576298,U1663220,21425627);广东省自然科学基金项目(2014A030313135,2014A030308012)。
RUI Zebao1,3, JI Hongbing2,3
Received:
2017-08-29
Revised:
2017-10-28
Online:
2018-01-05
Published:
2018-01-05
Contact:
10.11949/j.issn.0438-1157.20171186
Supported by:
supported by the National Natural Science Foundation of China (21776322, 21576298, U1663220, 21425627) and the Natural Science Foundation of Guangdong Province (2014A030313135, 2014A030308012).
摘要:
有机废气是重要的空气污染物,基于负载型贵金属催化剂的催化燃烧技术因效率高、无二次污染等特点而被广泛研究和应用。但目前催化燃烧技术仍存在高耗能和高成本等缺点。有机废气多相催化燃烧效率均与催化剂一定尺度范围内的结构密切相关。在有机废气催化氧化反应体系内存在从活性中心到高性能催化剂与过程的多尺度效应。依据不同尺度范围内催化剂的功能,对催化剂进行相应的设计和功能强化,是提高催化剂净化效率的有效方式。总结了近年国内外研究者在有机废气催化燃烧贵金属催化剂不同尺度范围内的设计理念和效果,并对有机废气催化燃烧催化剂的未来发展方向进行展望。
中图分类号:
芮泽宝, 纪红兵. 有机废气催化燃烧过程中多尺度效应和催化剂设计[J]. 化工学报, 2018, 69(1): 317-326.
RUI Zebao, JI Hongbing. Multi-scale effect and catalyst design in catalytic combustion of organic waste gas[J]. CIESC Journal, 2018, 69(1): 317-326.
[1] | TAYLOR S, HENEGHAN C, HUTEHINGS G, et al. The activity and mechanism of uranium oxide catalysts for the oxidative destruction of volatile organic compounds[J]. Catalysis Today, 2000, 59:249-259. |
[2] | KAMAL M, RAZZAK S, HOSSAIN M. Catalytic oxidation of volatile organic compounds (VOCs)-a review[J]. Atmospheric Environment, 2016, 140:117-134. |
[3] | 陈文泰, 邵敏, 袁斌, 等. 大气中挥发性有机物(VOCs)对二次有机气溶胶(SOA)生成贡献的参数化估算[J]. 环境科学学报, 2013, 33:163-172. CHEN W T, SHAO M, YUAN B, et al. Parameterization of contribution to secondary organic aerosol (SOA) formation from ambient volatile organic compounds (VOCs)[J]. Acta Scientiae Circumstantiae, 2013, 33:163-172. |
[4] | FARRAUTO R. Low-temperature oxidation of methane[J]. Science, 2012, 337:659-660. |
[5] | BAI B, QIAO Q, LI J, et al. Progress in research on catalysts for catalytic oxidation of formaldehyde[J]. Chinese Journal of Catalysis, 2016, 37:102-122. |
[6] | ZHANG Z, JIANG Z, SHANGGUAN W. Low-temperature catalysis for VOCs removal in technology and application:a state-of-the-art review[J]. Catalysis Today, 2016, 264:270-278. |
[7] | ZHANG C, LIU F, ZHAI Y, et al. Alkali-metal-promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures[J]. Angew. Chem. Int. Ed., 2012, 51:9628-9632. |
[8] | LESTINSKY P, BRUMMER V, JECHA D, et al. Design of a catalytic oxidation unit for elimination of volatile organic compound and carbon monoxide[J]. Industrial & Engineering Chemistry Research, 2014, 53:732-737. |
[9] | HU P, AMGHOUZ Z, HUANG Z, et al. Surface-confined atomic silver centers catalyzing formaldehyde oxidation[J]. Environmental Science & Technology, 2015, 49:2384-2390. |
[10] | CHEN C, WU Q, CHEN F, et al. Aluminum-rich beta zeolite-supported platinum nanoparticles for the low-temperature catalytic removal of toluene[J]. Journal of Material Chemistry A, 2015, 3:5556-5562. |
[11] | WU Z, DENG J, LIU Y, et al. Three-dimensionally ordered mesoporous Co3O4-supported Au-Pd alloy nanoparticles:high-performance catalysts for methane combustion[J]. Journal of Catalysis, 2015, 332:13-24. |
[12] | 骆潮明, 李艳霞, 刘中良, 等. 低浓度甲烷在微小燃烧器中的催化燃烧实验[J]. 化工学报, 2015, 66:216-221. LUO C M, LI Y X, LIU Z L, et al. Catalytic combustion of low concentration methane in micro-combustor[J]. CIESC Journal, 2015, 66:216-221. |
[13] | 王业峰, 周俊虎, 赵庆辰, 等. 甲烷与正丁烷微小尺度催化燃烧性能比较[J]. 化工学报, 2017, 68:896-902. WANG Y F, ZHOU J H, ZHAO Q C, et al. Comparison of catalytic combustion of methane and n-butane in microtube[J]. CIESC Journal, 2017, 68:896-902. |
[14] | CHEN C, YEH Y, CARGNELLO M, et al. Methane oxidation on Pd@ZrO2/Si-Al2O3 is enhanced by surface reduction of ZrO2[J]. ACS Catalysis, 2014, 4:3902-3909. |
[15] | CUI W, YUAN X, WU P, et al. Catalytic properties of γ-Al2O3 supported Pt-FeOx catalysts for complete oxidation of formaldehyde at ambient temperature[J]. RSC Advances, 2015, 5:104330-104336. |
[16] | 顾欧昀, 廖永涛, 陈锐杰, 等. 铜锰复合氧化物催化剂上甲苯的催化燃烧[J]. 化工学报, 2016, 67:2832-2840. GU O Y, LIAO Y T, CHEN R J, et al. Catalytic combustion of toluene over Cu-Mn mixed oxide catalyst[J]. CIESC Journal, 2016, 67:2832-2840. |
[17] | REN Z, BOTU V, WANG S, et al. Monolithically integrated spinel MxCo3-xO4(M=Co, Ni, Zn) nanoarray catalysts:scalable synthesis and cation manipulation for tunable low-temperature CH4 and CO oxidation[J]. Angewandte Chemie, 2014, 53:7223-7227. |
[18] | TAO F, SHAN J, NGUYEN L, et al. Understanding complete oxidation of methane on spinel oxides at a molecular level[J]. Nature communications, 2015, 6:7798. |
[19] | HUANG Y, LONG B, TANG M, et al. Bifunctional catalytic material:an ultrastable and high-performance surface defect CeO2 nanosheets for formaldehyde thermal oxidation and photocatalytic oxidation[J]. Applied Catalysis B:Environmental, 2016, 181:779-787. |
[20] | 余鸿敏, 卢晗锋, 陈银飞. Pt掺杂对Cu-Mn-Ce复合氧化物催化燃烧性能的影响[J]. 化工学报, 2011, 62:947-952. YU H M, LU H F, CHEN Y F. Influence of doped Pt on catalytic combustion performance of Cu-Mn-Ce oxide catalysts[J]. CIESC Journal, 2011, 62:947-952. |
[21] | XIE S, LIU Y, DENG J, et al. Three-dimensionally ordered macroporous CeO2-supported Pd@Co nanoparticles:highly active catalysts for methane oxidation[J]. Journal of Catalysis, 2016, 342:17-26. |
[22] | STAIR P, MARSHALL C, XIONG G, et al. Novel, uniform nanostructured catalytic membranes[J]. Topics in Catalysis, 2006, 39:181-186. |
[23] | WANG L, TRAN T, VIEN V O D, et al. Design of novel Pt-structured catalyst on anodic aluminum support for VOC's catalytic combustion[J]. Applied Catalysis A:General, 2008, 350:150-156. |
[24] | AVILA P, MONTES M, MIRÓ E. Monolithic reactors for environmental applications-a review on preparation technologies[J]. Chemical Engineering Journal, 2005, 109:11-36. |
[25] | MASUDA H, FUKUDA K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina[J]. Science, 1995, 268:1466-1468. |
[26] | PAN X, BAO X. The effects of confinement inside carbon nanotubes on catalysis[J]. Accounts of Chemical Research, 2011, 44:553-562. |
[27] | FENG D, RUI Z, JI H. Monolithic-like TiO2 nanotube supported Ru catalyst for activation of CH4 and CO2 to syngas[J]. Catalysis Communication, 2011, 12:1269-1273. |
[28] | FENG D, RUI Z, LU Y, et al. A simple method to decorate TiO2 nanotube arrays with controllable quantity of metal nanoparticles[J]. Chemical Engineering Journal, 2012, 179:363-371. |
[29] | RUI Z, FENG D, CHEN H, et al. Evaluation of TiO2 nanotube supported Ru catalyst for syngas production[J]. Catalysis Today, 2013, 216:178-184. |
[30] | RUI Z, FENG D, CHEN H, et al. Anodic TiO2 nanotube array supported nickel-noble metal bimetallic catalysts for activation of CH4 and CO2 to syngas[J]. International Journal of Hydrogen Energy, 2014, 39:16252-16261. |
[31] | CHEN H, RUI Z, JI H. Monolith-like TiO2 nanotube array supported Pt catalyst for HCHO removal under mild conditions[J]. Industrial & Engineering Chemistry Research, 2014, 53:7629-7636. |
[32] | ZHANG Q, LUAN H, LI T, et al. Study on Pt-structured anodic alumina catalysts for catalytic combustion of toluene:effects of competitive adsorbents and competitive impregnation methods[J]. Applied Surface Science, 2016, 360:1066-1074. |
[33] | RUI Z, TANG M, JI W, et al. Insight into the enhanced performance of TiO2 nanotube supported Pt catalyst for toluene oxidation[J]. Catalysis Today, 2017, 297:159-166. |
[34] | RUI Z, CHEN L, CHEN H, et al. Strong metal-support interaction in Pt/TiO2 induced by mild HCHO and NaBH4 solution reduction and its effect on catalytic toluene combustion[J]. Industrial & Engineering Chemistry Research, 2014, 53:15879-15888. |
[35] | BENARD S, OUSMANE M, RETAILLEAU L, et al. Catalytic removal of propene and toluene in air over noble metal catalyst[J]. Canadian Journal of Civil Engineering, 2009, 36:1935-1945. |
[36] | KIM M, KAMATA T, MASUI T, et al. Complete toluene oxidation on Pt/CeO2-ZrO2-ZnO catalysts[J]. Catalysts, 2013, 3:646-655. |
[37] | ABBASI Z, HAGHIGHI M, FATEHIFAR E, et al. Synthesis and physicochemical characterizations of nanostructured Pt/Al2O3-CeO2 catalysts for total oxidation of VOCs[J]. Journal of Hazardous Materials, 2011, 186:1445-1454. |
[38] | ABDELOUAHAB-REDDAM Z, MAIL R, COLOMA F, et al. Platinum supported on highly-dispersed ceria on activated carbon forthe total oxidation of VOCs[J]. Applied Catalysis A:General, 2015, 494:87-94. |
[39] | BENDAHOU K, CHERIF L, SIFFERT S, et al. The effect of the use of lanthanum-doped mesoporous SBA-15 on the performance of Pt/SBA-15 and Pd/SBA-15 catalysts for total oxidation of toluene[J]. Applied Catalysis A:General, 2008, 351:82-87. |
[40] | CHEN C, CHEN F, ZHANG L, et al. Importance of platinum particle size for complete oxidation of toluene over Pt/ZSM-5 catalysts[J]. Chemical Communication, 2015, 51:5936-5938. |
[41] | UCHISAWA J, KOSUGE K, NANBA T, et al. Effect of meso-and macropore structures of Pt-supported fibrous silica on the catalytic oxidation of toluene[J]. Catalysis Letters, 2009, 133:314-320. |
[42] | ZHAO S, LI K, JIANG S, et al. Pd-Co based spinel oxides derived from Pd nanoparticles immobilized on layered double hydroxides for toluene combustion[J]. Applied Catalysis B:Environmental, 2016, 181:236-248. |
[43] | MASUI T, IMADZU H, MATSUYAMA N, et al. Total oxidation of toluene on Pt/CeO2-ZrO2-BiBi2O3/Al2O3 catalysts prepared in the presence of polyvinyl pyrrolidone[J]. Journal of Hazardous Materials, 2010, 176:1106-1109. |
[44] | RUI Z, LU Y, JI H. Simulation of VOCs oxidation in a catalytic nanolith[J]. RSC Advances, 2013, 3:1103-1111. |
[45] | CHEN H, TANG M, RUI Z, et al. MnO2 promoted TiO2 nanotube array supported Pt catalyst for formaldehyde oxidation with enhanced efficiency[J]. Industrial & Engineering Chemistry Research, 2015, 54:8900-8907. |
[46] | QU Z, BU Y, QIN Y, et al. The improved reactivity of manganese catalysts by Ag in catalytic oxidation of toluene[J]. Applied Catalysis B:Environmental, 2013, 132/133:353-362. |
[47] | SHI C, CHEN B, LI X, et al. Catalytic formaldehyde removal by "storage-oxidation" cycling process over supported silver catalysts[J]. Chemical Engineering Journal, 2012, 200/201/202:729-737. |
[48] | ZOU X, RUI Z, JI H. Core-shell NiO@PdO nanoparticles supported on alumina as an advanced catalyst for methane oxidation[J]. ACS Catalysis, 2017, 7:1615-1625. |
[49] | CHEN H, RUI Z, WANG X, et al. Multifunctional Pt/ZSM-5 catalyst for complete oxidation of gaseous formaldehyde at ambient temperature[J]. Catalysis Today, 2015, 258:56-63. |
[50] | YANG T, HUO Y, LIU Y, et al. Efficient formaldehyde oxidation over nickel hydroxide promoted Pt/γ-Al2O3 with a low Pt content[J]. Applied Catalysis B:Environmental, 2017, 200:543-551. |
[51] | CARGNELLO M, DELGADO JAÉN J, GARRIDO J, et al. Exceptional activity for methane combustion over modular Pd@CeO2 subunits on functionalized Al2O3[J]. Science, 2012, 337:713-717. |
[52] | FU Q, LI W, YAO Y, et al. Interface-confined ferrous centers for catalytic oxidation[J]. Science, 2010, 328:1141-1144. |
[53] | HUANG H, LEUNG D, YE D. Effect of reduction treatment on structural properties of TiO2 supported Pt nanoparticles and their catalytic activity for formaldehyde oxidation[J]. Journal of Material Chemistry, 2011, 21:9647-9652. |
[54] | RUI Z, WU S, PENG C, et al. Comparison of TiO2 Degussa P25 with anatase and rutile crystalline phases for methane combustion[J]. Chemical Engineering Journal, 2014, 243:254-264. |
[55] | ZOU X, RUI Z, SONG S, et al. Enhanced methane combustion performance over NiAl2O4 interface promoted Pd/γ-Al2O3[J]. Journal of Catalysis, 2016, 338:192-201. |
[56] | ALYANI M, SMITH K. Kinetic analysis of the inhibition of CH4 oxidation by H2O on PdO/Al2O3 and CeO2/PdO/Al2O3 catalysts[J]. Industrial & Engineering Chemistry Research, 2016, 55:8309-8318. |
[57] | CASTELLAZZI P, GROPPI G, FORZATTI P, et al. Role of Pd loading and dispersion on redox behaviour and CH4 combustion activity of Al2O3 supported catalysts[J]. Catalysis Today, 2010, 155:18-26. |
[58] | MOWERY D, GRABOSKI M, OHNO T, et al. Deactivation of PdO-Al2O3 oxidation catalyst in lean-burn natural gas engine exhaust:aged catalyst characterization and studies of poisoning by H2O and SO2[J]. Applied Catalysis B:Environmental, 1999, 21:157-169. |
[59] | EUZEN P, GAL J, REBOURS B, et al. Deactivation of palladium catalyst in catalytic combustion of methane[J]. Catalysis Today, 1999, 47:19-27. |
[60] | PERSSON K, ERSSON A, JANSSON K, et al. Influence of molar ratio on Pd-Pt catalysts for methane combustion[J]. Journal of Catalysis, 2006, 243:14-24. |
[61] | GAO D, ZHANG C, WANG S, et al. Catalytic activity of Pd/Al2O3 toward the combustion of methane[J]. Catalysis Communications, 2008, 9:2583-2587. |
[62] | SETIAWAN A, FRIGGIERI J, BRYANT G, et al. Accelerated hydrothermal ageing of Pd/Al2O3 for catalytic combustion of ventilation air methane[J]. Catalysis Science & Technology, 2015, 5:4008-4016. |
[63] | ROTH D, GÉLIN P, PRIMET M, et al. Catalytic behaviour of Cl-free and Cl-containing Pd/Al2O3 catalysts in the total oxidation of methane at low temperature[J]. Applied Catalysis A:General, 2000, 203:37-45. |
[64] | CHEN G, ZHAO Y, FU G, et al. Interfacial effects in iron-nickel hydroxide-platinum nanoparticles enhance catalytic oxidation[J]. Science, 2014, 344:495-499. |
[65] | KWON D, SEO P, KIM G, et al. Characteristics of the HCHO oxidation reaction over Pt/TiO2 catalysts at room temperature:the effect of relative humidity on catalytic activity[J]. Applied Catalysis B:Environmental, 2015, 163:436-443. |
[66] | BAI B, LI J. Positive effects of K+ ions on three-dimensional mesoporous Ag/Co3O4 catalyst for HCHO oxidation[J]. ACS Catalysis, 2014, 4:2753-2762. |
[67] | CHEN H, RUI Z, Ji H. Titania-supported Pt catalyst reduced with HCHO for HCHO oxidation under mild conditions[J]. Chinese Journal of Catalysis, 2015, 36:88-196. |
[68] | TANG X, CHEN J, HUANG X, et al. Pt/MnOx-CeO2 catalysts for the complete oxidation of formaldehyde at ambient temperature[J]. Applied Catalysis B:Environmental, 2008, 81:115-121. |
[69] | YU X, HE J, WANG D, et al. Facile controlled synthesis of Pt/MnO2 nanostructured catalysts and their catalytic performance for oxidative decomposition of formaldehyde[J]. Journal of Physical Chemistry C, 2012, 116:851-860. |
[70] | ZHANG C, HE H, TANAKA K. Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature[J]. Applied Catalysis B:Environmental, 2006, 65:37-43. |
[71] | 李亚栋. 纳米颗粒化学大幅提升贵金属催化剂的催化活性界面[J]. 中国科学:化学, 2014, 44:1682-1683. LI Y D. Nanoparticle chemistry greatly improves the catalytically active interface of noble metal catalysts[J]. Scientia Sinica Chimica, 2014, 44:1682-1683. |
[72] | CHEN H, TANG M, RUI Z, et al. ZnO modified TiO2 nanotube array supported Pt catalyst for HCHO removal under mild conditions[J]. Catalysis Today, 2016, 264:23-30. |
[73] | LI S, LU X, GUO W, et al. Formaldehyde oxidation on the Pt/TiO2(101) surface:a DFT investigation[J]. Journal of Organometallic Chemistry, 2012, 704:38-48. |
[74] | WANG X, RUI Z, ZENG Y, et al. Synergetic effect of oxygen vacancy and Pd site on the interaction between Pd/anatase TiO2(101) and formaldehyde:a density functional theory study[J]. Catalysis Today, 2017, 297:151-158. |
[75] | JODLOWSKI P, JEDRZEJCZYK R, CHLEBDA D, et al. In situ spectroscopic studies of methane catalytic combustion over Co, Ce, and Pd mixed oxides deposited on a steel surface[J]. Journal of Catalysis, 2017, 350:1-12. |
[76] | 沈柳倩, 钙钛矿型催化剂催化燃烧VOCS的活性、抗毒性和稳定性研究[D]. 杭州:浙江工业大学, 2008. SHEN L Q. Research on the activity, poison resistance and stabilization of the perovskite catalysts for VOCs catalytic combustion[D]. Hangzhou:Zhejiang University of Technology, 2008. |
[77] | 王丽, 谢鸿凯, 戴启广, 等. 稀土基催化材料用于含氯废气催化燃烧的研究进展[J]. 稀有金属, 2017, 41:579-588. WANG L, XIE H K, DAI Q G, et al. Research progress in catalytic removing chlorinated volatile organic compounds by rare earth materials[J]. Rare Metals, 2017, 41:579-588. |
[1] | 史昊鹏, 钟达文, 廉学新, 张君峰. 朝下多尺度沟槽翅片结构表面沸腾换热实验研究[J]. 化工学报, 2023, 74(7): 2880-2888. |
[2] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[3] | 李治东, 万佳琪, 刘莹, 唐艺溪, 刘威, 宋忠贤, 张学军. 一步法合成α-MnO2/β-MnO2催化剂及其对甲苯催化氧化的性能研究[J]. 化工学报, 2022, 73(8): 3615-3624. |
[4] | 王沛, 魏荣阔. 光热驱动多孔氧化铈热化学循环解水制氢非热质平衡模型[J]. 化工学报, 2022, 73(7): 2885-2894. |
[5] | 胡善伟, 刘新华. 气固流化系统多尺度跨流域EMMS建模[J]. 化工学报, 2022, 73(6): 2514-2528. |
[6] | 曾欣欣, 白慧娟, 俞娟, 黄培, 杨超, 徐俊波. 面向空天动力用聚酰亚胺树脂基复合材料介尺度结构与调控[J]. 化工学报, 2022, 73(6): 2352-2369. |
[7] | 刘伟, 孙彦. β-淀粉样蛋白的聚集及其调控[J]. 化工学报, 2022, 73(6): 2381-2396. |
[8] | 钱宇, 陈耀熙, 史晓斐, 杨思宇. 太阳能波动特性大数据分析与风光互补耦合制氢系统集成[J]. 化工学报, 2022, 73(5): 2101-2110. |
[9] | 马荣, 孙杰, 李东辉, 魏进家. 基于Cu/TiO2/C-Wood复合材料的聚光太阳能驱动自漂浮高效海水汽化催化分解制氢体系[J]. 化工学报, 2022, 73(4): 1695-1703. |
[10] | 谢晶, 舒歌平, 杨葛灵, 高山松, 王洪学, 卢晗锋, 陈银飞. Mo修饰的钼铁复合催化剂及其煤直接液化催化性能[J]. 化工学报, 2021, 72(9): 4675-4684. |
[11] | 褚菲, 彭闯, 贾润达, 陈韬, 陆宁云. 基于多尺度核JYMKPLS迁移模型的间歇过程产品质量的在线预测方法[J]. 化工学报, 2021, 72(4): 2178-2189. |
[12] | 葛蔚, 李成祥, 陈飞国. 反应传递多尺度耦合的拟颗粒模拟[J]. 化工学报, 2021, 72(12): 5928-5935. |
[13] | 林羲栋, 唐友臣, 苏权飞, 刘绍鸿, 吴丁财. 层次孔碳材料:结构设计、功能改性及新能源器件应用[J]. 化工学报, 2020, 71(6): 2586-2598. |
[14] | 田洪舟,杨高东,杨国强,罗华勋,周政,孟为民,曹宇,李磊,张锋,杨建,张志炳. 微界面强化重油浆态床低压加氢的传质基础[J]. 化工学报, 2020, 71(11): 4927-4935. |
[15] | 刘作华,魏红军,熊黠,陶长元,王运东,程芳琴. 长短叶片复合型刚柔桨强化搅拌槽内流体混沌混合行为[J]. 化工学报, 2020, 71(11): 5080-5089. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||