[1] |
MENARD Y, ASTHANA A, PATISSON F, et al. Thermodynamic study of heavy metals behaviour during municipal waste incineration[J]. Process Safety & Environmental Protection, 2006, 84(4):290-296.
|
[2] |
SHI D Z, LI P F, ZAHNG C, et al. Level and patterns of polychlorinated biphenyls in residues from incineration of established source-classified MSW in China[J]. Toxicological & Environmental Chemistry, 2015, 97(10):1337-1349.
|
[3] |
JIN Y Q, MA X J, JIANG X G, et al. Effects of hydrothermal treatment on the major heavy metals in fly ash from municipal solid waste incineration[J]. Energy & Fuels, 2013, 27(1):394-400.
|
[4] |
SHAN C C, JING Z Z, PAN L L, et al. Hydrothermal solidification of municipal solid waste incineration fly ash[J]. Research on Chemical Intermediates, 2011, 37:551-565.
|
[5] |
熊祖鸿, 范根育, 鲁敏, 等. 垃圾焚烧飞灰处置技术研究进展[J]. 化工进展, 2013, 32(7):1678-1683. XIONG Z H, FAN G Y, LU M, et al. Treatment technologies of municipal solid waste incinerator fly ash:a review[J]. Chemical Industry & Engineering Progress, 2013, 32(7):1678-1683.
|
[6] |
BAYUSENO A P, SCHMAHL W W, MULLEJANS T. Hydrothermal processing of MSWI fly ash-towards new stable minerals and fixation of heavy metals[J]. Journal of Hazardous Materials, 2009, 167(1/2/3):250-259.
|
[7] |
王磊. 水热法外加硅铝源稳定医疗废物焚烧飞灰中重金属的研究[D]. 杭州:浙江大学, 2012. WANG L. A study on hydrothermal process to stabilize heavy metals from MWI fly ash with silicon-aluminum[D]. Hangzhou:Zhejiang University, 2012.
|
[8] |
ZHANG Z Z, QIN B, ZHANG X W, et al. The seeds effect on zeolite NU-87:synthesis parameters and structural properties[J]. Journal of Porous Materials, 2013, 20(3):515-521.
|
[9] |
JI Y Y, WANG Y Q, XIE B, et al. Zeolite seeds:third type of structure directing agents in the synthesis of zeolites[J]. Comments on Inorganic Chemistry, 2016, 36(1):1-16.
|
[10] |
SUZUKI K, HAYAKAWA T. The effects of seeding in the synthesis of zeolite ZSM-48 in the presence of tetramethylammoniumion[J]. Microporous & Mesoporous Materials, 2005, 77(2/3):131-137.
|
[11] |
CAULLET P, HAZM J, GUTH J L, et al. Synthesis of zeolite beta from nonalkaline fluoride aqueous aluminosilicate gels[J]. Zeolites, 1992, 12(3):240-250.
|
[12] |
HOUSTON J R, MAXWELL R S, CARROLL S A. Transformation of meta-stable calcium silicate hydrates to tobermorite:reaction kinetics and molecular structure from XRD and NMR spectroscopy[J]. Geochemical Transactions, 2009, 10(1):1-14.
|
[13] |
中华人民共和国国家环境保护总局. 固体废弃物浸出毒性浸出方法硫酸硝酸法:HJ/T 299-2007[S]. 北京:中国环境科学出版社, 2007. State Environmental Protection Administration of the People's Republic of China. Solid waste-Extraction procedure for leaching toxicity-Sulphuric acid & nitric acid method:HJ/T 299-2007[S]. Beijing:China Environmental Science Press, 2007.
|
[14] |
YAO Z D, TAMURA C, MATSUDA M, et al. Resource recovery of waste incineration fly ash:synthesis of tobermorite as ion exchanger[J]. Journal of Materials Research, 1999, 14(11):4437-4442.
|
[15] |
BOGUSH A, STEGEMANN J A, WOOD I, et al. Element composition and mineralogical characterisation of air pollution control residue from UK energy-from-waste facilities[J]. Waste Management, 2015, 36:119-129.
|
[16] |
JOSEWICZ W, GULLET B K. Reaction mechanisms of dry Ca-based sorbents with gaseous HCl[J]. Industrial Engineering Chemistry Research, 1995, 34(2):607-612.
|
[17] |
PAN Y, WU Z, ZHOU J, et al. Chemical characteristics and risk assessment of typical municipal solid waste incineration(MSWI) fly ash in China[J]. Journal of Hazardous Materials, 2013, 261(20):269-276.
|
[18] |
中华人民共和国国家环境保护总局, 国家质量监督检验检疫总局. 危险废物鉴别标准浸出毒性鉴别:GB 5085.3-2007[S]. 北京:中国环境科学出版社, 2007. State Environmental Protection Administration, General Administration of Quality Supervision of the People's Republic of China. Identification standards for hazardous wastes-Identification for extraction toxicity:GB 5085.3-2007[S]. Beijing:China Environmental Science Press, 2007.
|
[19] |
ABANADES S, FLAMANT G, GAGNEPAIN B, et al. Fate of heavy metals during municipal solid waste incineration[J]. Waste Management & Research the Journal of the International Solid Wastes & Public Cleansing Association Iswa, 2002, 20(1):55-68.
|
[20] |
JING Z Z, JIN F, HASHIDA T, et al. Hydrothermal solidification of blast furnace slag by formation of tobermorite[J]. Journal of Materials Science, 2007, 42(19):8236-8241.
|
[21] |
GEELHOED J S, MEEUSSEN J C L, ROE M J, et al. Chromium remediation or release? Effect of iron(Ⅱ) sulfate addition on chromium(Ⅵ) leaching from columns of chromite ore processing residue[J]. Environmental Science & Technology, 2003, 37(14):3206-3213.
|
[22] |
HILLIER S, LUMSDON D G, BRYDSON R, et al. Hydrogarnet:a host phase for Cr(Ⅵ) in chromite ore processing residue(COPR) and other high pH wastes[J]. Environmental Science & Technology, 2007, 41(6):1921-1927.
|
[23] |
COLEMAN N J, BRASSINGTON D S. Synthesis of Al-substituted 11Å tobermorite from newsprint recycling residue:a feasibility study[J]. Materials Research Bulletin, 2003, 38(3):485-497.
|
[24] |
KIKUMA J, TSUNASHIMA M, ISHIKAWA T, et al. Effects of quartz particle size and water-to-solid ratio on hydrothermal synthesis of tobermorite studied by in-situ time-resolved X-ray diffraction[J]. Journal of Solid State Chemistry, 2011, 184(8):2066-2074.
|
[25] |
KLIMESCH D S, RAY A, GUERBOIS J P. Differential scanning calorimetry evaluation of autoclaved cement based building materials made with construction and demolition waste[J]. Thermochimica Acta, 2002, 389(1/2):195-198.
|
[26] |
MELLER N, HALL C, PHIPPS J S. A new phase diagram for the CaO-Al2O3-SiO2-H2O hydroceramic system at 200℃[J]. Materials Research Bulletin, 2005, 40(5):715-723.
|
[27] |
刘贺. 利用钾长石合成雪硅钙石粉体反应机理研究[D]. 北京:中国地质大学, 2006. LIU H. Synthesis of bermorite powder from potassium feldspar:reactive mechanism research[D]. Beijing:China University of Geosciences, 2006.
|
[28] |
YASUE T, SHIOYA Y, ARAL Y. Synthesis and characteristics of Al-substituted tobermorite by alkoxide method[J]. Journal of the Ceramic Society of Japan, 1991, 99(1153):780-787.
|
[29] |
LIU F M, CHEN D P, NI W, et al. Effect of Al3+ on tobermorite crystallinity[J]. Journal of University of Science and Technology Beijing, 2000, 7(2):79-81.
|
[30] |
PEREZ-BARRADO E, PUJOL M C, AGUILO M, et al. Fast aging treatment for the synthesis of hydrocalumites using microwaves[J]. Applied Clay Science, 2013, 80/81(4):313-319.
|
[31] |
LIU Q, LI Y J, ZHANG J, et al. Effective removal of zinc from aqueous solution by hydrocalumite[J]. Chemical Engineering Journal, 2011, 175(22):33-38.
|
[32] |
HU Y Y, ZHANG P F, LI J P, et al. Stabilization and separation of heavy metals in incineration fly ash during the hydrothermal treatment process[J]. Journal of Hazardous Materials, 2015, 299(4):149-157.
|
[33] |
JIN J, LI X D, CHI Y, et al. Co-disposal of heavy metals containing waste water and medical waste incinerator fly ash by hydrothermal process with addition of sodium carbonate:a case study on Cu(Ⅱ) removal[J]. Water Air & Soil Pollution, 2010, 209(1):391-400.
|
[34] |
IZQUIERDO M, QUEROL X. Leaching behavior of elements from coal combustion fly ash:an overview[J]. International Journal of Coal Geology, 2012, 94(3):54-66.
|
[35] |
ZHANG H, HE P J, SHAO L M, et al. Leaching behavior of Pb and Zn in air pollution control residues and their modeling prediction[J]. Journal of Environmental Sciences, 2006, 18(3):583-586.
|
[36] |
JING Z Z, FAN X W, LEI Z, et al. Hydrothermal solidification behavior of municipal solid waste incineration bottom ash without any additives[J]. Waste Management, 2013, 33(5):1182-1189.
|
[37] |
JIAO F C, ZHANG L. Study on the species of heavy metals in MSW incineration fly ash and their leaching behavior[J]. Fuel Processing Technology, 2016, 152:108-115.
|