化工学报 ›› 2019, Vol. 70 ›› Issue (6): 2027-2035.DOI: 10.11949/j.issn.0438-1157.20181308
收稿日期:
2018-11-12
修回日期:
2019-02-14
出版日期:
2019-06-05
发布日期:
2019-06-05
通讯作者:
张婧然
基金资助:
Jingran ZHANG(),Xuan ZHOU,Hui WANG,Dandan ZHU,Xianning LI
Received:
2018-11-12
Revised:
2019-02-14
Online:
2019-06-05
Published:
2019-06-05
Contact:
Jingran ZHANG
摘要:
基于已有研究基础,解析了在微生物燃料电池(microbial fuel cell,MFC)特有构型和产电条件下涉及的重金属去除机制,综述了装置构型、阴极类型、重金属浓度、外接电阻、pH、电子受体类型等因素对MFC产电性能及重金属去除效能的影响。从生物电化学作用、微生物作用、电子受体竞争机制等侧面,阐明各单一因素对重金属去除速率、还原产物的影响和作用。提出今后MFC去除重金属废水的研究需立足于实际废水,构建中试装置为实际应用提供数据支撑。进一步确定各影响因素的主次地位及作用方向,根据已有理论基础调控各影响因素,得到更快的去除速率和理想的还原产物。同时筛选适于重金属分离的电极材料及考察可实现产物回收的物理化学方法,以期实现重金属真正意义上的回收。
中图分类号:
张婧然, 周璇, 王辉, 朱丹丹, 李先宁. 微生物燃料电池处理重金属废水的研究进展[J]. 化工学报, 2019, 70(6): 2027-2035.
Jingran ZHANG, Xuan ZHOU, Hui WANG, Dandan ZHU, Xianning LI. Research advances in treatment of heavy metal wastewater by microbial fuel cells[J]. CIESC Journal, 2019, 70(6): 2027-2035.
1 | Logan B E , Regan J M . Electricity-producing bacterial communities in microbial fuel cells[J]. Trends in Microbiology, 2006, 14(12): 512-518. |
2 | Rabaey K , Verstraete W . Microbial fuel cells: novel biotechnology for energy generation[J]. Trends in Biotechnology, 2005, 23(6): 291-298. |
3 | Modin O , Wang X , Wu X , et al . Bioelectrochemical recovery of Cu, Pb, Cd, and Zn from dilute solutions[J]. Journal of Hazardous Materials, 2012, 235/236(20): 291-297. |
4 | Fu F L , Wang Q . Removal of heavy metal ions from wastewaters: a review[J]. Journal of Environmental Management, 2011, 92(3): 407-418. |
5 | Zhang L J , Tao H C , Wei X Y , et al . Bioelectrochemical recovery of ammonia-copper (Ⅱ) complexes from wastewater using a dual chamber microbial fuel cell[J]. Chemosphere, 2012, 89(10): 1177-1182. |
6 | Jiang Z G , Xu N , Liu B X , et al . Metal concentrations and risk assessment in water, sediment and economic fish species with various habitat preferences and trophic guilds from Lake Caizi, Southeast China[J]. Ecotoxicology and Environmental Safety, 2018, 157: 1-8. |
7 | Gall J E , Boyd R S , Rajakaruna N . Transfer of heavy metals through terrestrial food webs: a review[J]. Environmental Monitoring and Assessment, 2015, 187(4): 21. |
8 | Begum Z A , Rahman I M , Tate Y , et al . Remediation of toxic metal contaminated soil by washing with biodegradable aminopolycarboxylate chelants[J]. Chemosphere, 2012, 87(10): 1161-1170. |
9 | Sun Y , Li Y , Xu Y , et al . In situ, stabilization remediation of cadmium (Cd) and lead (Pb) co-contaminated paddy soil using bentonite[J]. Applied Clay Science, 2015, 105/106: 200-206. |
10 | Agnello A C , Bagard M , Van E H , et al . Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation[J]. Science of the Total Environment, 2016, 563/564: 693-703. |
11 | Vigliotta G , Matrella S , Cicatelli A , et al . Effects of heavy metals and chelants on phytoremediation capacity and on rhizobacterial communities of maize[J]. Journal of Environmental Management, 2016, 179: 93-102. |
12 | Khodadad C L M , Zimmerman A R , Green S J , et al . Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments[J]. Soil Biology and Biochemistry, 2011, 43: 385-392. |
13 | Kumpiene J , Lagerkvist A , Maurice C . Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review[J]. Waste Management, 2008, 28(1): 215-225. |
14 | Wang G , Huang L P , Zhang Y F . Cathodic reduction of hexavalent chromium Cr (Ⅵ) coupled with electricity generation in microbial fuel cells[J]. Biotechnology Letters, 2008, 30(11): 1959-1966. |
15 | Ter Heijne A , Liu F , Van Der Weijden R , et al . Copper recovery combined with electricity production in a microbial fuel cell[J]. Environmental Science & Technology, 2010, 44(11): 4376-4381. |
16 | Wang Z , Lim B , Choi C . Removal of Hg2+ as an electron acceptor coupled with power generation using a microbial fuel cell[J]. Bioresource Technology, 2011, 102(10): 6304-6307. |
17 | Choi C , Cui Y . Recovery of silver from wastewater coupled with power generation using a microbial fuel cell[J]. Bioresource Technology, 2012, 107: 522-525. |
18 | Wang Y H , Wang B S , Pan B , et al . Electricity production from a bio-electrochemical cell for silver recovery in alkaline media[J]. Applied Energy, 2013, 112: 1337-1341. |
19 | Li M , Zhou S Q , Xu Y T , et al . Simultaneous Cr (Ⅵ) reduction and bioelectricity generation in a dual chamber microbial fuel cell[J]. Chemical Engineering Journal, 2018, 334: 1621-1629. |
20 | Miran W , Jang J , Nawaz M , et al . Mixed sulfate-reducing bacteria-enriched microbial fuel cells for the treatment of wastewater containing copper[J]. Chemosphere, 2017, 189: 134-142. |
21 | Qiu R , Zhang B G , Li J X , et al . Enhanced vanadium (V) reduction and bioelectricity generation in microbial fuel cells with biocathode[J]. Journal of Power Sources, 2017, 359: 379-383. |
22 | Holden J F , Adams M W W . Microbe-metal interactions in marine hydrothermal environments[J]. Current Opinion in Chemical Biology, 2003, 7(2): 160-165. |
23 | Wang H M , Ren Z J . Bioelectrochemical metal recovery from wastewater: a review[J]. Water Research, 2014, 66: 219-232. |
24 | Tandukar M , Huber S J , Onodera T , et al . Biological chromium(VI) reduction in the cathode of a microbial fuel cell[J]. Environmental Science & Technology, 2009, 43(21): 8159-8165. |
25 | Kim C , Lee C R , Song Y E , et al . Hexavalent chromium as a cathodic electron acceptor in a bipolar membrane microbial fuel cell with the simultaneous treatment of electroplating wastewater[J]. Chemical Engineering Journal, 2017, 328: 703-707. |
26 | Liu L A , Yuan Y , Li F B , et al . In-situ C r ( Ⅵ ) reduction with electrogenerated hydrogen peroxide driven by iron-reducing bacteria[J]. Bioresource Technology, 2011, 102(3): 2468-2473. |
27 | Wu Y N , Zhao X , Jin M , et al . Copper removal and microbial community analysis in single-chamber microbial fuel cell[J]. Bioresource Technology, 2018, 253: 372-377. |
28 | Abourached C , Catal T , Liu H . Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production[J]. Water Research, 2014, 51: 228-233. |
29 | Ho N A D , Babel S , Sombatmankhong K . Factors influencing silver recovery and power generation in bio-electrochemical reactors[J]. Environmental Science and Pollution Research, 2017, 24(26): 21024-21037. |
30 | Huang L P , Chai X L , Cheng S A , et al . Evaluation of carbon-based materials in tubular biocathode microbial fuel cells in terms of hexavalent chromium reduction and electricity generation[J]. Chemical Engineering Journal, 2011, 166(2): 652-661. |
31 | Rabaey K , Clauwaert P , Aelterman P , et al . Tubular microbial fuel cells for efficient electricity generation[J]. Environmental Science & Technology, 2005, 39(20): 8077-8082. |
32 | Choi C , Hu N . The modeling of gold recovery from tetrachloroaurate wastewater using a microbial fuel cell[J]. Bioresource Technology, 2013, 133: 589-598. |
33 | Ha P T , Moon H , Kim B H , et al . Determination of charge transfer resistance and capacitance of microbial fuel cell through a transient response analysis of cell voltage[J]. Biosensors & Bioelectronics, 2010, 25(7): 1629-1634. |
34 | Tao H C , Zhang L J , Gao Z Y , et al . Copper reduction in a pilot-scale membrane-free bioelectrochemical reactor[J]. Bioresource Technology, 2011, 102(22): 10334-10339. |
35 | Li Y , Lu A H , Ding H R , et al . Cr (Ⅵ) reduction at rutile-catalyzed cathode in microbial fuel cells[J]. Electrochemistry Communications, 2009, 11(7): 1496-1499. |
36 | Huang L P , Wang Q , Jiang L J , et al . Adaptively evolving bacterial communities for complete and selective reduction of C r ( Ⅵ ) , C u ( Ⅱ ) , and Cd(Ⅱ) in biocathode bioelectrochemical systems[J]. Environmental Science & Technology, 2015, 49(16): 9914-9924. |
37 | Yang S Q , Jia B Y , Liu H . Effects of the Pt loading side and cathode-biofilm on the performance of a membrane-less and single-chamber microbial fuel cell[J]. Bioresource Technology, 2009, 100(3): 1197-1202. |
38 | Wu X Y , Zhu X J , Song T S , et al . Effect of acclimatization on hexavalent chromium reduction in a biocathode microbial fuel cell[J]. Bioresource Technology, 2015, 180: 185-191. |
39 | Norberg A B , Molin N . Toxicity of cadmium, cobalt, uranium and zinc to Zoogloea ramigera [J]. Water Research, 1983, 17(10): 1333-1336. |
40 | Ozbelge T A , Ozbelge H O , Altinten P . Effect of acclimatization of microorganisms to heavy metals on the performance of activated sludge process[J]. Journal of Hazardous Materials, 2007, 142(1/2): 332-339. |
41 | Alexandrino M , Macias F , Costa R , et al . A bacterial consortium isolated from an Icelandic fumarole displays exceptionally high levels of sulfate reduction and metals resistance[J]. Journal of Hazardous Materials, 2011, 187(1/2/3): 362-370. |
42 | Kamika I , Momba M N B . Comparing the tolerance limits of selected bacterial and protozoan species to nickel in wastewater systems[J]. Science of the Total Environment, 2011, 410: 172-181. |
43 | Kamika I , Momba M N B . Comparing the tolerance limits of selected bacterial and protozoan species to vanadium in wastewater systems[J]. Water Air and Soil Pollution, 2012, 223(5): 2525-2539. |
44 | Abourached C , Catal T , Liu H . Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production[J]. Water Research, 2014, 51: 228-233. |
45 | Zhou S , Wei C H , Liao C D , et al . Damage to DNA of effective microorganisms by heavy metals: impact on wastewater treatment[J]. Journal of Environmental Sciences, 2008, 20(12): 1514-1518. |
46 | Hao L T , Zhang B G , Cheng M , et al . Effects of various organic carbon sources on simultaneous V(V) reduction and bioelectricity generation in single chamber microbial fuel cells[J]. Bioresource Technology, 2016, 201: 105-110. |
47 | Zhang Y P , Li G Q , Wen J , et al . Electrochemical and microbial community responses of electrochemically active biofilms to copper ions in bioelectrochemical systems[J]. Chemosphere, 2018, 196: 377-385. |
48 | Li Y , Wu Y N , Puranik S , et al . Metals as electron acceptors in single-chamber microbial fuel cells[J]. Journal of Power Sources, 2014, 269: 430-439. |
49 | Xu W , Zhang H M , Li G , et al . A urine/Cr (Ⅵ) fuel cell—electrical power from processing heavy metal and human urine[J]. Journal of Electroanalytical Chemistry, 2016, 764: 38-44. |
50 | Tao H C , Liang M , Li W , et al . Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell[J]. Journal of Hazardous Materials, 2011, 189(1/2): 186-192. |
51 | Lim B S , Lu H , Choi C , et al . Recovery of silver metal and electric power generation using a microbial fuel cell[J]. Desalination and Water Treatment, 2015, 54(13): 3675-3681. |
52 | Li Z J , Zhang X W , Lei L C . Electricity production during the treatment of real electroplating wastewater containing Cr6+ using microbial fuel cell[J]. Process Biochemistry, 2008, 43(12): 1352-1358. |
53 | Liu H , Cheng S A , Logan B E . Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration[J]. Environmental Science & Technology, 2005, 39(14): 5488-5493. |
54 | Jang J K , Pham T H , Chang I S , et al . Construction and operation of a novel mediator- and membrane-less microbial fuel cell[J]. Process Biochemistry, 2004, 39(8): 1007-1012. |
55 | Menicucci J , Beyenal H , Marsili E , et al . Procedure for determining maximum sustainable power generated by microbial fuel cells[J]. Environmental Science & Technology, 2006, 40(3): 1062-1068. |
56 | Li N , Kakarla R , Min B . Effect of influential factors on microbial growth and the correlation between current generation and biomass in an air cathode microbial fuel cell[J]. International Journal of Hydrogen Energy, 2016, 41(45): 20606-20614. |
57 | Rismani-Yazdi H , Christy A D , Carver S M , et al . Effect of external resistance on bacterial diversity and metabolism in cellulose-fed microbial fuel cells[J]. Bioresource Technology, 2011, 102(1): 278-283. |
58 | Song T S , Yan Z S , Zhao Z W , et al . Removal of organic matter in freshwater sediment by microbial fuel cells at various external resistances[J]. Journal of Chemical Technology and Biotechnology, 2010, 85(11): 1489-1493. |
59 | Aelterman P , Versichele M , Marzorati M , et al . Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes[J]. Bioresource Technology, 2008, 99(18): 8895-8902. |
60 | Zhang B G , Zhou S G , Zhao H Z , et al . Factors affecting the performance of microbial fuel cells for sulfide and vanadium (V) treatment[J]. Bioprocess and Biosystems Engineering, 2010, 33(2): 187-194. |
61 | Gil G C , Chang I S , Kim B H , et al . Operational parameters affecting the performance of a mediator-less microbial fuel cell[J]. Biosensors & Bioelectronics, 2003, 18(4): 327-334. |
62 | Bohannan E W , Huang L Y , Miller F S , et al . In situ electrochemical quartz crystal microbalance study of potential oscillations during the electrodeposition of Cu/Cu2O layered nanostructures[J]. Langmuir, 1999, 15(3): 813-818. |
63 | Switzer J A , Hung C J , Bohannan E W , et al . Electrodeposition of quantum-confined metal semiconductor nanocomposites[J]. Advanced Materials, 1997, 9(4): 334-338. |
64 | Biedermann G , Sillen L G . Studies on the hydrolysis of metal ions (30): a critical survey of the solubility equilibria of Ag2O[J]. Acta Chemica Scandinavica, 1960, 14(3): 717-725. |
65 | Rodriguez-Valadez F , Ortiz-Exiga C , Ibanez J G , et al . Electroreduction of Cr ( Ⅵ ) to C r ( Ⅲ ) on reticulated vitreous carbon electrodes in a parallel-plate reactor with recirculation[J]. Environmental Science & Technology, 2005, 39(6): 1875-1879. |
66 | Tao H C , Gao Z Y , Ding H , et al . Recovery of silver from silver ( Ⅰ ) -containing solutions in bioelectrochemical reactors[J]. Bioresource Technology, 2012, 111: 92-97. |
67 | Zhang B G , Feng C P , Ni J R , et al . Simultaneous reduction of vanadium (Ⅴ) and chromium (Ⅵ) with enhanced energy recovery based on microbial fuel cell technology[J]. Journal of Power Sources, 2012, 204: 34-39. |
68 | Jiang D , Curtis M , Troop E , et al . A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (MAC MFCs) to enhance the power production in wastewater treatment[J]. International Journal of Hydrogen Energy, 2011, 36(1): 876-884. |
69 | Torres C I , Kato Marcus A , Rittmann B E . Kinetics of consumption of fermentation products by anode-respiring bacteria[J]. Applied Microbiology And Biotechnology, 2007, 77(3): 689-697. |
70 | Zhang B G , Hao L T , Tian C X , et al . Microbial reduction and precipitation of vanadium ( Ⅴ ) in groundwater by immobilized mixed anaerobic culture[J]. Bioresource Technology, 2015, 192: 410-417. |
71 | Habibul N , Hu Y , Wang Y K , et al . Bioelectrochemical chromium ( Ⅵ ) removal in plant-microbial fuel cells[J]. Environmental Science & Technology, 2016, 50(7): 3882-3889. |
72 | Tian L J , Li W W , Zhu T T , et al . Directed biofabrication of nanoparticles through regulating extracellular electron transfer[J]. Journal of the American Chemical Society, 2017, 139(35): 12149-12152. |
[1] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[2] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[3] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[4] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[5] | 吕龙义, 及文博, 韩沐达, 李伟光, 高文芳, 刘晓阳, 孙丽, 王鹏飞, 任芝军, 张光明. 铁基导电材料强化厌氧去除卤代有机污染物:研究进展及未来展望[J]. 化工学报, 2023, 74(8): 3193-3202. |
[6] | 朱理想, 罗默也, 张晓东, 龙涛, 余冉. 醌指纹法指示三氯乙烯污染土功能微生物活性应用研究[J]. 化工学报, 2023, 74(6): 2647-2654. |
[7] | 张艳梅, 袁涛, 李江, 刘亚洁, 孙占学. 高效SRB混合菌群构建及其在酸胁迫条件下的性能研究[J]. 化工学报, 2023, 74(6): 2599-2610. |
[8] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
[9] | 张建华, 陈萌萌, 孙雅雯, 彭永臻. 部分短程硝化同步除磷耦合Anammox实现生活污水高效脱氮除磷[J]. 化工学报, 2023, 74(5): 2147-2156. |
[10] | 胡香凝, 尹渊博, 袁辰, 是赟, 刘翠伟, 胡其会, 杨文, 李玉星. 成品油在土壤中运移可视化的实验研究[J]. 化工学报, 2023, 74(4): 1827-1835. |
[11] | 罗来明, 张劲, 郭志斌, 王海宁, 卢善富, 相艳. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734. |
[12] | 闫新龙, 黄志刚, 胡清勋, 张新, 胡晓燕. Cu/Co掺杂多孔炭活化过硫酸盐降解水中硝基酚研究[J]. 化工学报, 2023, 74(3): 1102-1112. |
[13] | 王思琪, 顾天宇, 陈献富, 王通, 李佳, 柯威, 李小锋, 范益群. 陶瓷膜用于杜仲叶提取液澄清的分离特性与膜污染机制研究[J]. 化工学报, 2023, 74(3): 1113-1125. |
[14] | 徐银, 蔡洁, 陈露, 彭宇, 刘夫珍, 张晖. 异相可见光催化耦合过硫酸盐活化技术在水污染控制中的研究进展[J]. 化工学报, 2023, 74(3): 995-1009. |
[15] | 钱志广, 樊越, 王世学, 岳利可, 王金山, 朱禹. 吹扫条件对PEMFC阻抗弛豫现象和低温启动的影响[J]. 化工学报, 2023, 74(3): 1286-1293. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||