化工学报 ›› 2020, Vol. 71 ›› Issue (8): 3602-3613.DOI: 10.11949/0438-1157.20191475
张开莲1(),杨凯1,4(),李笑笑1,梁若雯2,管婕1,李文强1,黄健1,余长林3(),戴文新4()
收稿日期:
2019-12-05
修回日期:
2020-06-02
出版日期:
2020-08-05
发布日期:
2020-08-05
通讯作者:
杨凯,余长林,戴文新
作者简介:
张开莲(1994—),女,硕士研究生,基金资助:
Kailian ZHANG1(),Kai YANG1,4(),Xiaoxiao LI1,Ruowen LIANG2,Jie GUAN1,Wenqiang LI1,Jian HUANG1,Changlin YU3(),Wenxin DAI4()
Received:
2019-12-05
Revised:
2020-06-02
Online:
2020-08-05
Published:
2020-08-05
Contact:
Kai YANG,Changlin YU,Wenxin DAI
摘要:
利用一步水热法成功制备了In2S3/CdIn2S4异质结微球催化剂,通过降解甲基橙(MO)、酸性橙Ⅱ(AOⅡ) 和罗丹明B(RhB)来评价所制备催化剂的活性。实验结果表明,In2S3/CdIn2S4异质结微球对MO、AOⅡ和RhB的光催化降解率分别达到了87%、75%和96%,明显高于催化剂In2S3和CdIn2S4。瞬态光电流和阻抗测试结果表明,In2S3/CdIn2S4异质结微球受光激发产生的电子空穴对能快速得到分离。捕获主要活性物种实验表明,该反应体系中主要是超氧自由基和空穴起关键性作用。In2S3/CdIn2S4异质结微球催化剂重复使用四次,其催化能力依然保持较高水平。In2S3/CdIn2S4异质结微球活性的增强归因于异质结的形成有助于电子的转移,从而降低了电子空穴对的复合概率。并且合适的能带结构有助于产生大量的光生电子,电子与活性氧的结合最终引起氧化能力的增强。
中图分类号:
张开莲, 杨凯, 李笑笑, 梁若雯, 管婕, 李文强, 黄健, 余长林, 戴文新. 一步水热合成In2S3/CdIn2S4异质结微球及其光催化性能[J]. 化工学报, 2020, 71(8): 3602-3613.
Kailian ZHANG, Kai YANG, Xiaoxiao LI, Ruowen LIANG, Jie GUAN, Wenqiang LI, Jian HUANG, Changlin YU, Wenxin DAI. One-step hydrothermal synthesis of In2S3/CdIn2S4 heterojunction microsphere and its photocatalytic performance[J]. CIESC Journal, 2020, 71(8): 3602-3613.
样品 | 比表面积/(m2/g) | 孔容/(cm3/g) | 孔径/nm |
---|---|---|---|
In2S3 | 23.78 | 0.128 | 21.53 |
CdIn2S4 | 7.47 | 0.055 | 29.46 |
In2S3/CdIn2S4 | 7.09 | 0.062 | 35.22 |
表1 样品的比表面积、孔容和孔径
Table 1 Specific surface area, pore volume and pore diameter of samples
样品 | 比表面积/(m2/g) | 孔容/(cm3/g) | 孔径/nm |
---|---|---|---|
In2S3 | 23.78 | 0.128 | 21.53 |
CdIn2S4 | 7.47 | 0.055 | 29.46 |
In2S3/CdIn2S4 | 7.09 | 0.062 | 35.22 |
1 | Banerjee T, Haase F, Savasci G, et al. Single-site photocatalytic H2 evolution from covalent organic frameworks with molecular cobaloxime co-catalysts[J]. Journal of the American Chemical Society, 2017, 139(45): 16228-16234. |
2 | Xu D, Cheng B, Cao S, et al. Enhanced photocatalytic activity and stability of Z-scheme Ag2CrO4-GO composite photocatalysts for organic pollutant degradation[J]. Applied Catalysis B: Environmental, 2015, 164: 380-388. |
3 | Yang K, Li X X, Zeng D B, et al. Review on heterophase/homophase junctions for efficient photocatalysis: the case of phase transition construction [J]. Chinese Journal of Catalysis, 2019, 40: 796-818. |
4 | Low J, Cheng B, Yu J. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review[J]. Applied Surface Science, 2017, 392: 658-686. |
5 | Yang G, Chen D, Ding H, et al. Well-designed 3D ZnIn2S4 nanosheets/TiO2 nanobelts as direct Z-scheme photocatalysts for CO2 photoreduction into renewable hydrocarbon fuel with high efficiency [J]. Applied Catalysis B: Environmental, 2017, 219: 611-618. |
6 | Dong Y P, Nie R, Wang J X, et al. Photoelectrocatalytic CO2 reduction based on metalloporphyrin-modified TiO2 photocathode [J]. Chinese Journal of Catalysis, 2019, 40: 1222-1230. |
7 | 卢艳红, 徐艳红, 张素玲, 等. 单壁碳纳米管显著增强的 ZnO 可见光催化活性[J]. 化工学报, 2014, 65(7): 2855-2860. |
Lu Y H, Xu Y H, Zhang S L, et al. Visible-light photocatalytic activity of ZnO enhanced by single-walled carbon nanotubes[J]. CIESC Journal, 2014, 65(7): 2855-2860. | |
8 | Chen D, Wang Z, Ren T, et al. Influence of defects on the photocatalytic activity of ZnO[J]. The Journal of Physical Chemistry C, 2014, 118(28): 15300-15307. |
9 | 何志桥, 陈锦萍, 童丽丽, 等. BiOCl/g-C3N4异质结催化剂可见光催化还原 CO2 [J]. 化工学报, 2016, 67(11): 4634-4642. |
He Z Q, Chen J P, Tong L L, et al. BiOCl/g-C3N4 heterojunction catalyst for efficient photocatalytic reduction of CO2 under visible light [J]. CIESC Journal, 2016, 67(11): 4634-4642. | |
10 | Hao Q, Niu X, Nie C, et al. A highly efficient g-C3N4/SiO2 heterojunction: the role of SiO2 in the enhancement of visible light photocatalytic activity [J]. Physical Chemistry Chemical Physics, 2016, 18(46): 31410-31418. |
11 | Wang C, Thompson R L, Ohodnicki P, et al. Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts [J]. Journal of Materials Chemistry, 2011, 21(35): 13452-13457. |
12 | Guo Y, Ao Y, Wang P, et al. Mediator-free direct dual-Z-scheme Bi2S3/BiVO4/MgIn2S4 composite photocatalysts with enhanced visible-light-driven performance towards carbamazepine degradation [J]. Applied Catalysis B: Environmental, 2019, 254: 479-490. |
13 | Zheng N C, Ouyang T, Chen Y, et al. Ultrathin CdS shell-sensitized hollow S-doped CeO2 spheres for efficient visible-light photocatalysis [J]. Catalysis Science & Technology, 2019, 9: 1357-1364. |
14 | Li X, Yu C, Yang S, et al. Advance towards the utilization of Vis-NIR light energy by YF3: Yb3+, Er3+ coating over ZnS microspheres triggering hydrogen production and pollutants disposal[J]. Journal of Materials Chemistry C, 2019, 7: 8053-8062. |
15 | Wang S, Guan B Y, Lu Y, et al. Formation of hierarchical In2S3-CdIn2S4 heterostructured nanotubes for efficient and stable visible light CO2 reduction[J]. Journal of the American Chemical Society, 2017, 139(48): 17305-17308. |
16 | 张涛. SrTiO3及其异质结的制备与光催化水解制氢性能研究[D]. 青岛: 青岛科技大学, 2016. |
Zhang T. Preparation and photocatalytic hydrogen production performance SrTiO3 and its heterojunction [D]. Qingdao: Qingdao University of Science & Technology, 2016. | |
17 | Stanley J, Sree R J, Ramachandran T, et al. Vertically aligned TiO2 nanotube arrays decorated with CuO mesoclusters for the nonenzymatic sensing of glucose[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(4): 2732-2739. |
18 | Chen D, Zhang H, Hu S, et al. Preparation and enhanced photoelectrochemical performance of coupled bicomponent ZnO-TiO2 nanocomposites [J]. The Journal of Physical Chemistry C, 2008, 112(1): 117-122. |
19 | Xiang Q, Yu J. Graphene-based photocatalysts for hydrogen generation [J]. The Journal of Physical Chemistry Letters, 2013, 4(5): 753-759. |
20 | Mehraj O, Mir N A, Pirzada B M, et al. Fabrication of novel Ag3PO4/BiOBr heterojunction with high stability and enhanced visible-light-driven photocatalytic activity[J]. Applied Surface Science, 2015, 332: 419-429. |
21 | Cao J, Xu B, Lin H, et al. Chemical etching preparation of BiOI/BiOBr heterostructures with enhanced photocatalytic properties for organic dye removal [J]. Chemical Engineering Journal, 2012, 185: 91-99. |
22 | Barpuzary D, Khan Z, Vinothkumar N, et al. Hierarchically grown urchinlike CdS@ZnO and CdS@Al2O3 heteroarrays for efficient visible-light-driven photocatalytic hydrogen generation[J]. The Journal of Physical Chemistry C, 2011, 116(1): 150-156. |
23 | Tsuji I, Kato H, Kudo A. Visible-light-induced H2 evolution from an aqueous solution containing sulfide and sulfite over a ZnS-CuInS2-AgInS2 solid-solution photocatalyst [J]. Angewandte Chemie International Edition, 2005, 44(23): 3565-3568. |
24 | Zeng X, Wang Z, Wang G, et al. Highly dispersed TiO2 nanocrystals and WO3 nanorods on reduced graphene oxide: Z-scheme photocatalysis system for accelerated photocatalytic water disinfection [J]. Applied Catalysis B: Environmental, 2017, 218: 163-173. |
25 | Yu C, Li G, Kumar S, et al. Phase transformation synthesis of novel Ag2O/Ag2CO3 heterostructures with high visible light efficiency in photocatalytic degradation of pollutants[J]. Advanced Materials, 2014, 26(6): 892-898. |
26 | Zeng D, Yang K, Yu C, et al. Phase transformation and microwave hydrothermal guided a novel double Z-scheme ternary vanadate heterojunction with highly efficient photocatalytic performance [J]. Applied Catalysis B: Environmental, 2018, 237: 449-463. |
27 | Çakici T, Güzeldir B, Sağlam M. Temperature dependent of electrical characteristics of Au/n-GaAs/In Schottky diode with In2S3 interfacial layer obtained by using spray pyrolysis method[J]. Journal of Alloys and Compounds, 2015, 646: 954-965. |
28 | Wang T, Chai Y, Ma D, et al. Multidimensional CdS nanowire/CdIn2S4 nanosheet heterostructure for photocatalytic and photoelectrochemical applications[J]. Nano Research, 2017, 10(8): 2699-2711. |
29 | Pomaska M, Sáez-Araoz R, Steigerta A, et al. Influence of Cl and H2O in spray-ILGAR® solutions on the voltage gain of Cu(In,Ga)(S,Se)2 solar cells with In2S3 buffer[J]. Solar Energy Materials and Solar Cells, 2015, 132: 303-310. |
30 | Li X, Yang K, Yu C, et al. Broadband photocatalysis using a Z-scheme heterojunction of Au/NaYF4: Yb, Er/WO3·0.33H2O-W18O49via a synergetic strategy of upconversion function and plasmonic effect[J]. Inorganic Chemistry Frontiers, 2019, 6: 3158-3167. |
31 | 徐萌川, 王亚淼, 杨毅, 等. 活性炭纤维负载 Pr3+: Y2SiO5/TiO2 复合材料的制备与性能[J]. 化工学报, 2016, 67(11): 4885-4891. |
Xu M C, Wang Y M, Yang Y, et al. Preparation and performance of Pr3+:Y2SiO5/TiO2 composites deposited on activated carbon fiber[J]. CIESC Journal, 2016, 67(11): 4885-4891. | |
32 | Yuan X, Jiang L, Liang J, et al. In-situ synthesis of 3D microsphere-like In2S3/InVO4 heterojunction with efficient photocatalytic activity for tetracycline degradation under visible light irradiation [J]. Chemical Engineering Journal, 2019, 356: 371-381. |
33 | Berestok T, Guardia P, Portals J B, et al. Surface chemistry and nano-/microstructure engineering on photocatalytic In2S3 nanocrystals[J]. Langmuir, 2018, 34(22): 6470-6479. |
34 | Lozeman J J A, Vollenbroek J C, Bomer J G, et al. Modular ATR FT-IR microreactor chip for optimizing reaction conditions[C]//22nd International Conference on Miniaturized Systems for Chemistry and Life Sciences, μTAS2018. 2018: 2117-2120. |
35 | Wang H, He W, Wang H, et al. In situ FT-IR investigation on the reaction mechanism of visible light photocatalytic NO oxidation with defective g-C3N4 [J]. Science Bulletin, 2018, 63(2): 117-125. |
36 | Paukshtis E A, Yaranova M A, Batueva I S, et al. An FTIR study of silanol nests over mesoporous silicate materials [J]. Microporous and Mesoporous Materials, 2019, 288: 109582. |
37 | Nakamura S, Ota K, Shibuya Y, et al. Role of a water network around the Mn4CaO5 cluster in photosynthetic water oxidation: a Fourier transform infrared spectroscopy and quantum mechanics/molecular mechanics calculation study [J]. Biochemistry, 2016, 55(3): 597-607. |
38 | Xiao P, Jiang D, Ju L, et al. Construction of RGO/CdIn2S4/g-C3N4 ternary hybrid with enhanced photocatalytic activity for the degradation of tetracycline hydrochloride [J]. Applied Surface Science, 2018, 433: 388-397. |
39 | Jia F, Yao Z, Jiang Z. Solvothermal synthesis ZnS-In2S3-Ag2S solid solution coupled with TiO2-xSx nanotubes film for photocatalytic hydrogen production[J]. International Journal of Hydrogen Energy, 2012, 37(4): 3048-3055. |
40 | Chen X, Zhang J, Zeng J, et al. Novel 3D/2D heterojunction photocatalysts constructed by three-dimensional In2S3 dandelions and ultrathin hexagonal SnS2 nanosheets with excellent photocatalytic and photoelectrochemical activities [J]. Applied Surface Science, 2019, 463: 693-703. |
41 | Xing C, Wu Z, Jiang D, et al. Hydrothermal synthesis of In2S3/g-C3N4 heterojunctions with enhanced photocatalytic activity [J]. Journal of Colloid and Interface Science, 2014, 433: 9-15. |
42 | Liu H, Zhang Z, Meng J, et al. Novel visible-light-driven CdIn2S4/mesoporous g-C3N4 hybrids for efficient photocatalytic reduction of CO2 to methanol[J]. Molecular Catalysis, 2017, 430: 9-19. |
43 | Liu S, Zhao M, He Z, et al. Preparation of a p-n heterojunction 2D BiOI nanosheet/1DBiPO4 nanorod composite electrode for enhanced visible light photoelectrocatalysis [J]. Chinese Journal of Catalysis, 2019, 40: 446-457. |
44 | Li X, Yan X, Zhao N, et al. Facile synthesis of ternary CdIn2S4/ In(OH)3/Zn2GeO4 nanocomposite with enhanced visible-light photocatalytic H2 evolution[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 360: 298-305. |
45 | Zhang X, Zhang J, Yu J, et al. Fabrication of InVO4/AgVO3 heterojunctions with enhanced photocatalytic antifouling efficiency under visible-light[J]. Applied Catalysis B: Environmental, 2018, 220: 57-66. |
[1] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[2] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[3] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[4] | 李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
[5] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
[6] | 李瑞康, 何盈盈, 卢维鹏, 王园园, 丁皓东, 骆勇名. 电化学强化钴基阴极活化过一硫酸盐的研究[J]. 化工学报, 2023, 74(5): 2207-2216. |
[7] | 吴学红, 栾林林, 陈亚南, 赵敏, 吕财, 刘勇. 可降解柔性相变薄膜的制备及其热性能[J]. 化工学报, 2023, 74(4): 1818-1826. |
[8] | 杨庆云, 李青松, 陈泽铭, 邓靖, 李玉瑛, 杨帆, 陈国元, 李国新. UV/PMS、UV/PDS、UV/SPC工艺降解尼泊金甲酯[J]. 化工学报, 2023, 74(3): 1322-1331. |
[9] | 李雨萧, 王青月, Ho Lim Khak, 李晓辉, Erlita Mastan, 彭博, 王文俊. 自由基聚合反应动力学常数测定技术[J]. 化工学报, 2023, 74(2): 559-570. |
[10] | 章承浩, 罗京, 张吉松. 微反应器内基于氮氧自由基催化剂连续氧气/空气氧化反应的研究进展[J]. 化工学报, 2023, 74(2): 511-524. |
[11] | 谢煜, 张民, 胡卫国, 王玉军, 骆广生. 利用膜分散微反应器高效溶解D-7-ACA的研究[J]. 化工学报, 2023, 74(2): 748-755. |
[12] | 李彩风, 王晓, 李岗建, 林军章, 汪卫东, 束青林, 曹嫣镔, 肖盟. 嗜烃乳化菌SL-1与内源菌协同驱油的菌群作用关系研究[J]. 化工学报, 2022, 73(9): 4095-4102. |
[13] | 靳文章, 张玉玲, 贾晓宇. 电化学高级氧化对HEDP的降解效能研究[J]. 化工学报, 2022, 73(9): 4062-4069. |
[14] | 邓靖, 杨庆云, 陈民杰, 李青松, 杨帆, 陈国元, 李国新. UV-LED/NaClO工艺降解尼泊金甲酯:不同活性物种的作用[J]. 化工学报, 2022, 73(9): 4113-4121. |
[15] | 许贤伦, 钱旸, 张兴旺, 雷乐成. 高压脉冲介质阻挡放电降解土壤中芘的研究[J]. 化工学报, 2022, 73(9): 4025-4033. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||