化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 421-429.doi: 10.11949/0438-1157.20201315

• 分离工程 • 上一篇    下一篇

聚偏氟乙烯膜亲水改性及其乳液分离与重金属吸附应用

吴中杰1(),刘则艳2,谢连科1,崔美2,黄仁亮2()   

  1. 1.国网山东省电力公司电力科学研究院,山东 济南 250002
    2.天津大学海洋科学与技术学院,天津 300072
  • 收稿日期:2020-09-17 修回日期:2020-10-10 出版日期:2021-06-20 发布日期:2021-06-20
  • 通讯作者: 黄仁亮 E-mail:414699594@qq.com;tjuhrl@tju.edu.cn
  • 作者简介:吴中杰(1987—),男,博士研究生,414699594@qq.com
  • 基金资助:
    国家电网公司科学技术项目(520626190015);国家自然科学基金项目(21976132)

Preparation of hydrophilic poly(vinylidene fluoride) membrane for oil/water emulsion separation and heavy metal ions adsorption

WU Zhongjie1(),LIU Zeyan2,XIE Lianke1,CUI Mei2,HUANG Renliang2()   

  1. 1.Shandong Electric Power Research Institute of Chinese Power Company, Jinan 250002, Shandong, China
    2.School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
  • Received:2020-09-17 Revised:2020-10-10 Published:2021-06-20 Online:2021-06-20
  • Contact: HUANG Renliang E-mail:414699594@qq.com;tjuhrl@tju.edu.cn

摘要:

聚偏氟乙烯(PVDF)膜因其优异的化学和力学稳定性而被广泛应用于水处理领域,但PVDF膜本身的疏水性,容易使其在处理含油废水的过程中被油滴污染,造成膜孔堵塞。以PVDF微滤膜为基底,通过单宁酸(TA)和聚乙烯亚胺(PEI)共沉积形成了TA/PEI黏附层,经戊二醛共价交联和接枝半胱氨酸(Cys),制备了一种PVDF改性膜(PVDF@TA/PEI-Cys)。改性后的PVDF膜具有良好的亲水性和水下超疏油性,水接触角和水下油接触角分别为22.2°和150.2°。在0.09 MPa下,PVDF@TA/PEI-Cys膜的纯水通量达6328 L/(m2·h),水包油型乳液分离效率高达99.9%。此外,该改性膜还可同时吸附水中的汞离子,最大吸附量为24.7 mg/g。

关键词: 膜分离, 重金属, 吸附, 乳液, 亲水性

Abstract:

Polyvinylidene fluoride (PVDF) membrane is widely used in the field of wastewater treatment due to its excellent chemical and mechanical stability. However, the hydrophobicity of the PVDF membrane makes it easy to be contaminated by oil droplets during the treatment of oily wastewater, which causes the pores of the membrane to be blocked and the decrease in permeation flux. In this study, we developed an approach for preparing a hydrophilic PVDF membrane. Specially, the co-deposition of tannic acid (TA) and polyethyleneimine (PEI) on the PVDF membrane was conducted for the formation of TA/PEI adhesive layer, which was covalently grafted with cysteine via glutaraldehyde to fabricate a modified PVDF membrane (PVDF@TA/PEI-Cys). The PVDF@TA/PEI-Cys membrane has good hydrophilicity and underwater superoleophobicity. The water contact angle and underwater oil contact angle were 22.2° and 150.2°, respectively. The pure water flux of the PVDF@TA/PEI-Cys membrane reached 6328 L/(m2·h) under 0.09 MPa and the separation efficiency of the oil-in-water emulsions was as high as 99.9%. In addition, the modified PVDF membrane can also be used for the adsorption of mercury ions with the maximum adsorption capacity of 24.7 mg/g.

Key words: membrane separation, heavy metal ions, adsorption, emulsion, hydrophilicity

中图分类号: 

  • TQ 028.8

图1

不同PVDF膜表面形貌"

图2

不同改性PVDF膜的XPS谱图(a)和PVDF@TA/PEI-Cys膜S 2p的XPS谱图(b)"

图3

不同PVDF膜的水接触角及其随时间的变化"

图4

不同PVDF膜的纯水通量"

图5

不同PVDF膜的水下油接触角"

图6

不同水包油乳液(SDS稳定)的通量和油截留率(a);不同表面活性剂稳定的水包柴油乳液的通量和油截留率(b);柴油/SDS/水乳液分离前后的照片和光学显微镜图像(c)"

图7

不同水包油乳液的通量恢复率"

图8

重复过滤水包柴油乳液的通量变化"

图9

Hg2+浓度随吸附时间的变化(a); Hg2+浓度随吸附时间变化的拟二级动力学拟合曲线(b)"

表1

Hg2+吸附的拟二级动力学模型参数"

Ionqe(exp)/(mg/g)Pseudo-second-order kinetic
qe/(mg/g)K2/(g/(mg·min))R2
Hg2+15.915.820.0040.9994

图10

不同初始Hg2+浓度下膜的吸附量(a);Langmuir等温吸附模型拟合曲线(b)"

表2

Hg2+吸附的Langmuir模型参数"

Ionqe(exp)/(mg/g)Langmuir model
qm/(mg/g)KL/(L/mg)R2
Hg2+24.725.96120.90.9913

表3

不同膜材料对重金属离子的吸附量比较"

MembraneIonCapacity/(mg/g)Ref.
PVDF@TA/PEI-CysHg2+24.7this work
Zr(Ⅳ)-PVDFAs5+21.5[17]
PES/FMBOAs3+73.5[18]
PVDF-PAA-MEAHg2+55.0[19]
PC/HMOCu2+29.6[20]
PSf/GOCu2+68.3[21]
PSf/HFOPb2+13.2[22]
PSf/NFOCd2+23.8[23]
PVA-PVDFPb2+121.2[24]
1 Shi H, He Y, Pan Y, et al. A modified mussel-inspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation [J]. Journal of Membrane Science, 2016, 506: 60-70.
2 Zhang N, Qi Y F, Zhang Y N, et al. A review on oil/water mixture separation material [J]. Industrial & Engineering Chemistry Research, 2020, 59(33): 14546-14568.
3 Lu D W, Zhang T, Gutierrez L, et al. Influence of surface properties of filtration-layer metal oxide on ceramic membrane fouling during ultrafiltration of oil/water emulsion [J]. Environmental Science & Technology, 2016, 50(9): 4668-4674.
4 Zhu Y Z, Zhang F, Wang D, et al. A novel zwitterionic polyelectrolyte grafted PVDF membrane for thoroughly separating oil from water with ultrahigh efficiency [J]. Journal of Materials Chemistry A, 2013, 1(18): 5758.
5 Zhang G F, Gao F, Zhang Q H, et al. Enhanced oil-fouling resistance of poly(ether sulfone) membranes by incorporation of novel amphiphilic zwitterionic copolymers [J]. RSC Advances, 2016, 6(9): 7532-7543.
6 Luo C D, Liu Q X. Oxidant-induced high-efficient mussel-inspired modification on PVDF membrane with superhydrophilicity and underwater superoleophobicity characteristics for oil/water separation [J]. ACS Applied Materials & Interfaces, 2017, 9(9): 8297-8307.
7 Wu W M, Huang R L, Qi W, et al. Bioinspired peptide-coated superhydrophilic poly(vinylidene fluoride) membrane for oil/water emulsion separation [J]. Langmuir, 2018, 34(22): 6621-6627.
8 尚茜子, 张宝泉, 李雲. 不锈钢网负载Al-β分子筛涂层的制备及其在油水分离中的应用[J]. 化工学报, 2019, 70(10): 3994-4001.
Shang X Z, Zhang B Q, Li Y. Fabrication of stainless steel mesh supported zeolite Al-β coatings for oil/water separation [J]. CIESC Journal, 2019, 70(10): 3994-4001.
9 Ma W J, Li Y S, Gao S T, et al. Self-healing and superwettable nanofibrous membranes with excellent stability toward multifunctional applications in water purification [J]. ACS Applied Materials & Interfaces, 2020, 12(20): 23644-23654.
10 Wang W, Han N, Yang C, et al. Fabrication of P(AN-MA)/rGO-g-PAO superhydrophilic nanofiber membrane for removal of heavy metal ions [J]. Journal of Nanoscience and Nanotechnology, 2020, 20(3): 1685-1696.
11 Shi M B, Lin D W, Huang R L, et al. Construction of a mercapto-functionalized Zr-MOF/melamine sponge composite for the efficient removal of oils and heavy metal ions from water [J]. Industrial & Engineering Chemistry Research, 2020, 59(29): 13220-13227.
12 Chen H, Wu H, Wang Q W, et al. Separation performance of Hg2+ in desulfurization wastewater by the graphene oxide polyethersulfone membrane [J]. Energy & Fuels, 2019, 33(9): 9241-9248.
13 Song Y, Li Z L, Zhang J B, et al. A low-cost biomimetic heterostructured multilayer membrane with geopolymer microparticles for broad-spectrum water purification [J]. ACS Applied Materials & Interfaces, 2020, 12(10): 12133-12142.
14 Chen X, He Y, Fan Y, et al. Nature-inspired polyphenol chemistry to fabricate halloysite nanotubes decorated PVDF membrane for the removal of wastewater [J]. Separation and Purification Technology, 2019, 212: 326-336.
15 Xu S J, Wang Z Y, Li S X, et al. Fabrication of polyimide-based hollow fiber membrane by synergetic covalent-crosslinking strategy for organic solvent nanofiltration (OSN) application [J]. Separation and Purification Technology, 2020, 241: 116751.
16 Urban N R, Ernst K, Bernasconi S. Addition of sulfur to organic matter during early diagenesis of lake sediments [J]. Geochimica et Cosmochimica Acta, 1999, 63(6): 837-853.
17 Zheng Y M, Zou S W, Nanayakkara K G N, et al. Adsorptive removal of arsenic from aqueous solution by a PVDF/zirconia blend flat sheet membrane [J]. Journal of Membrane Science, 2011, 374(1/2): 1-11.
18 Gohari R J, Lau W J, Matsuura T, et al. Fabrication and characterization of novel PES/Fe-Mn binary oxide UF mixed matrix membrane for adsorptive removal of As(Ⅲ) from contaminated water solution [J]. Separation and Purification Technology, 2013, 118: 64-72.
19 Hernández S, Islam M S, Thompson S, et al. Thiol-functionalized membranes for mercury capture from water [J]. Industrial & Engineering Chemistry Research, 2020, 59(12): 5287-5295.
20 Delavar M, Bakeri G, Hosseini M. Fabrication of polycarbonate mixed matrix membranes containing hydrous manganese oxide and alumina nanoparticles for heavy metal decontamination: characterization and comparative study [J]. Chemical Engineering Research and Design, 2017, 120: 240-253.
21 Mukherjee R, Bhunia P, De S. Impact of graphene oxide on removal of heavy metals using mixed matrix membrane [J]. Chemical Engineering Journal, 2016, 292: 284-297.
22 Abdullah N, Gohari R J, Yusof N, et al. Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: preparation, characterization and its adsorptive removal of lead (Ⅱ) from aqueous solution [J]. Chemical Engineering Journal, 2016, 289: 28-37.
23 Mondal M, Dutta M, De S. A novel ultrafiltration grade nickel iron oxide doped hollow fiber mixed matrix membrane: spinning, characterization and application in heavy metal removal [J]. Separation and Purification Technology, 2017, 188: 155-166.
24 Zhao D D, Yu Y, Chen J P. Treatment of lead contaminated water by a PVDF membrane that is modified by zirconium, phosphate and PVA [J]. Water Research, 2016, 101: 564-573.
[1] 赵继昊, 唐伟强, 徐小飞, 赵双良, 贺炅皓. 高分子复合材料中键合剂在不同纳米填料表面的吸附能计算[J]. 化工学报, 2022, 73(7): 3174-3181.
[2] 黄陆月, 刘畅, 许勇毅, 邢浩若, 王峰, 马双忱. CDI二维浓度传质模型的建立以及实验验证[J]. 化工学报, 2022, 73(7): 2933-2943.
[3] 朱江伟, 马鹏飞, 杜晓, 杨言言, 郝晓刚, 罗善霞. 基于可变价NiFe-LDH/rGO对磷酸根离子的特异性电控分离[J]. 化工学报, 2022, 73(7): 3057-3067.
[4] 黄丽菁, 黄继娇, 李鹏辉, 刘芷诺, 蒋康杰, 吴文娟. 木质素羟丙基磺甲基化改性及其对纤维素酶水解的影响[J]. 化工学报, 2022, 73(7): 3232-3239.
[5] 潘大伟, 汪伟, 谢锐, 巨晓洁, 刘壮, 褚良银. 微流控乳液模板法构建功能微颗粒过程中介尺度结构定向调控的研究进展[J]. 化工学报, 2022, 73(6): 2306-2317.
[6] 李丽媛, 王建强, 陈奕, 郭友娣, 周健, 刘志成, 王仰东, 谢在库. 甲醇制丙烯反应中ZSM-5分子筛催化剂积炭失活介尺度机制研究[J]. 化工学报, 2022, 73(6): 2669-2676.
[7] 张浩, 赵宇, 徐志明, 李晋辉. 羧甲基葡聚糖的快速沉降法阻垢特性研究[J]. 化工学报, 2022, 73(4): 1515-1522.
[8] 刘碧强, 曹海山. 基于流量校准的吸附测量方法及误差分析[J]. 化工学报, 2022, 73(4): 1597-1605.
[9] 王毅, 熊启钊, 陈杨, 杨江峰, 李立博, 李晋平. 锆基金属有机骨架材料用于氨吸附性能的研究[J]. 化工学报, 2022, 73(4): 1772-1780.
[10] 王祺, 房阔, 贺聪慧, 王凯军. 流动电极电容去离子技术综述:研究进展与未来挑战[J]. 化工学报, 2022, 73(3): 975-989.
[11] 钟国栋, 邓超和, 王洋, 王佳韵, 王如竹. 蜂窝状水凝胶吸附床传热传质特性数值模拟及验证[J]. 化工学报, 2022, 73(3): 1083-1092.
[12] 王旭, 张乐瑶, 张昊轩, 演嘉辉, 吴玉帅, 吴冬, 陈汇勇, 马晓迅. 中空孔结构对W掺杂MFI分子筛丙酮吸附行为的研究[J]. 化工学报, 2022, 73(3): 1194-1206.
[13] 王洒, 温怡静, 郭丹煜, 周欣, 李忠. 锆基MOF次级结构单元调控及轻烃吸附分离性能增强[J]. 化工学报, 2022, 73(2): 730-738.
[14] 刘轩, 苏银皎, 滕阳, 张锴, 王鹏程, 李丽锋, 李圳. 超低排放燃煤机组硒的迁移转化及飞灰对其富集特性[J]. 化工学报, 2022, 73(2): 923-932.
[15] 张超, 陈健, 殷文华, 沈圆辉, 钮朝阳, 余秀鑫, 张东辉, 唐忠利. 变压吸附氢气纯化过程瞬态分析[J]. 化工学报, 2022, 73(1): 308-321.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!