[1] |
HERRMANN U, KELLY B, PRICE H. Two-tank molten salt storage for parabolic trough solar power plants[J]. Energy, 2004, 29(5/6):883-893.
|
[2] |
PRICE H, LUPFERT E, KEARNEY D, et al. Advances in parabolic trough solar power technology[J]. Journal of Solar Energy Engineering, 2002, 124(2):109-125.
|
[3] |
BROWN D R, LAMARCHE J L. SPANNER G E. Chemical energy storage system for SEGS solar thermal power plant[J]. Journal of Solar Energy Engineering-Transaction of the ASME, 1992, 92:212-218.
|
[4] |
吴玉庭, 任楠, 马重芳. 熔融盐显热蓄热技术的应用与研究进展[J]. 储能科学与技术, 2013, 2(6):589-591. WU Y T, REN N, MA C F. Research and application of molten salts for sensible heat storage[J]. Energy Storage Science and Technology, 2013, 2(6):589-591.
|
[5] |
JO B, BANERJEE D. Thermal properties measurement of binary carbonate salt mixtures for concentrating solar power plants[J]. Journal of Renewable & Sustainable Energy, 2015, 7(3):121-137.
|
[6] |
SHIN D, BANERJEE D. Enhanced specific heat of silica nanofluid[J]. Journal of Heat Transfer, 2011, 133(2):216-226.
|
[7] |
TIZNOBAIK H, SHIN D. Enhanced specific heat capacity of high-temperature molten salt-based nanofluids[J]. International Journal of Heat & Mass Transfer, 2013, 57(2):542-548.
|
[8] |
SHIN D, BANERJEE D. Enhanced thermal properties of SiO2, nanocomposite for solar thermal energy storage applications[J]. International Journal of Heat & Mass Transfer, 2015, 84:898-902.
|
[9] |
MING X H, PAN C. Optimal concentration of alumina nanoparticles in molten Hitec salt to maximize its specific heat capacity[J]. International Journal of Heat & Mass Transfer, 2014, 70(3):174-184.
|
[10] |
DUDDA B, SHIN D. Effect of nanoparticle dispersion on specific heat capacity of a binary nitrate salt eutectic for concentrated solar power applications[J]. International Journal of Thermal Sciences, 2013, 69(7):37-42.
|
[11] |
TIZNOBAIK H, SHIN D. Effect of formation of "long range" secondary dendritic nanostructures in molten salt nanofluids on the values of specific heat capacity[J]. International Journal of Heat & Mass Transfer, 2015, 91:342-346.
|
[12] |
SHIN D, BANERJEE D. Effects of silica nanoparticles on enhancing the specific heat capacity of carbonate salt eutectic (work in progress)[J]. International Journal of Structural Changes in Solids, 2010, 2:25-31.
|
[13] |
SHIN D, BANERJEE D. Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications[J]. International Journal of Heat & Mass Transfer, 2011, 54(5/6):1064-1070.
|
[14] |
SEO J, SHIN. D. Size effect of nanoparticle on specific heat in a ternary nitrate (LiNO3-NaNO3-KNO3) salt eutectic for thermal energy storage[J]. Applied Thermal Energy, 2016, 102:144-148.
|
[15] |
LU M C, HUANG C H. Specific heat capacity of molten salt-based alumina nanofluid[J]. Nanoscale Research Letter, 2013, 8(1):292.
|
[16] |
ANDREU-CABEDO P, MONDARAGON R, HERNANDEZ L, et al. Increment of specific heat capacity of solar salt with SiO2 nanoparticles[J]. Nanoscale Research Letter, 2014, 9(1):582-593.
|
[17] |
CHIERUZZI M, CERRITELLI G F, MILIOZZI A, et al. Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage[J]. Nanoscale Research Letter, 2013, 8(1):448-457.
|
[18] |
DEVARADJANE R, SHIN D. Enhanced heat capacity of molten salt nano-materials for concentrated solar power application[C]//ASME 2012 International Mechanical Engineering Congress and Exposition. Houston:ASME, 2012:269-273.
|
[19] |
CHIERUZZI M, MILIOZZI A, CRESCENZI T, et al. A new phase change material based on potassium nitrate with silica and alumina nanoparticles for thermal energy storage[J]. Nanoscale Research Letters, 2015, 10(1):273.
|
[20] |
LIU S, WU D, LIU J, et al. Development of a novel molten-salt filled with nanoparticles for concentration solar plants[C]//2nd IET Renewable Power Generation Conference. Beijing:IET, 2014:1-4.
|
[21] |
JO B, BANERJEE D. Effect of dispersion homogeneity on specific heat capacity enhancement of molten salt nanomaterials using carbon nanotubes[J]. Journal of Solar Energy Engineering, 2015, 137(1):11-20.
|
[22] |
JO B, BANERJEE D. Enhanced specific heat capacity of molten salt-based nanomaterials:effects of nanoparticle dispersion and solvent material[J]. Acta Materialia, 2014, 75(9):80-91.
|
[23] |
SHIN D, BANERJEE D. Specific heat of nanofluids synthesized by dispersing alumina nanoparticles in alkali salt eutectic[J]. International Journal of Heat & Mass Transfer, 2014, 74(5):210-214.
|
[24] |
JO B, BANERJEE D. Effect of solvent on specific heat capacity enhancement of binary molten salt-based carbon nanotube nanomaterials for thermal energy storage[J]. International Journal of Thermal Sciences, 2015, 98:219-227.
|
[25] |
RIAZI H, MESGARI S, AHMED N A, et al. The effect of nanoparticle morphology on the specific heat of nanosalts[J]. International Journal of Heat & Mass Transfer, 2016, 94:254-261.
|
[26] |
LASFARGUES M, GENG Q, CAO H, et al. Mechanical dispersion of nanoparticles and Its effect on the specific heat capacity of impure binary nitrate salt mixtures[J]. Nanomaterials, 2015, 5(3):1136-1146.
|
[27] |
CHIERUZZI M, CERRITELLI G F, MILIOZZI A, et al. Heat capacity of nanofluids for solar energy storage produced by dispersing oxide nanoparticles in nitrate salt mixture directly at high temperature[J]. Solar Energy Materials & Solar Cells, 2017, 167:60-69.
|
[28] |
张璐迪. 纳米SiO2-熔盐复合储热材料的制备与热物性实验研究[D]. 北京:北京工业大学, 2016. ZHANG L D. Experimental study on preparation and thermal properties of composite nano-SiO2 molten salt using in thermal energy storage[D]. Beijing:Beijing University of Technology, 2016.
|
[29] |
ZHANG L D, CHEN X, WU Y T, et al. Effect of nanoparticle dispersion on enhancing the specific heat capacity of quaternary nitrate for solar thermal energy storage application[J]. Solar Energy Materials & Solar Cells, 2016, 157:808-813.
|
[30] |
REN N, WU Y T, MA C F, et al. Preparation and thermal properties of quaternary mixed nitrate with low melting point[J]. Solar Energy Materials & Solar Cells, 2014, 127(4):6-13.
|
[31] |
张立德, 牟季美. 纳米材料和纳米结构[M]. 北京:科学出版社, 2001:444-445. ZHANG L D, MOU J M. Nano-materials and Nano-structure[M]. Beijing:Science Press, 2001:444-445.
|