化工学报 ›› 2022, Vol. 73 ›› Issue (6): 2334-2351.DOI: 10.11949/0438-1157.20220160
郑涛1(),刘海燕1(),张睿1,孟祥海1,岳源源2,刘植昌1()
收稿日期:
2022-02-07
修回日期:
2022-03-18
出版日期:
2022-06-05
发布日期:
2022-06-30
通讯作者:
刘海燕,刘植昌
作者简介:
郑涛(1994—),男,博士研究生,基金资助:
Tao ZHENG1(),Haiyan LIU1(),Rui ZHANG1,Xianghai MENG1,Yuanyuan YUE2,Zhichang LIU1()
Received:
2022-02-07
Revised:
2022-03-18
Online:
2022-06-05
Published:
2022-06-30
Contact:
Haiyan LIU,Zhichang LIU
摘要:
传统的水热合成分子筛的工艺在源头上并不环保,因为其所使用的硅、铝试剂是由天然硅铝矿物通过复杂的反应与分离过程制备而来的。以天然矿物直接作为分子筛合成的硅、铝源而不经化学试剂中间体被视为分子筛绿色合成的发展方向之一,其关键在于天然矿物的介尺度活化,即通过物理、化学或物理与化学作用相结合的方式破坏天然硅铝矿物的高聚合度结构,将其解聚为具有不同介尺度结构的分子筛合成原料。为此,本文综述了天然矿物介尺度活化方法的研究进展,从能耗、活化机理和所得活化产物的介尺度结构的角度,对比分析了机械活化、热活化、碱熔活化、亚熔盐活化和拟固相活化的优缺点,总结了以不同介尺度活化产物为原料合成高性能分子筛的研究现状,为以天然硅铝矿物为原料高性能分子筛的合成提供思路。
中图分类号:
郑涛, 刘海燕, 张睿, 孟祥海, 岳源源, 刘植昌. 基于分子筛绿色合成的天然硅铝矿物介尺度活化研究进展[J]. 化工学报, 2022, 73(6): 2334-2351.
Tao ZHENG, Haiyan LIU, Rui ZHANG, Xianghai MENG, Yuanyuan YUE, Zhichang LIU. Research progress on mesoscale activation of natural aluminosilicate minerals based on green synthesis of molecular sieve[J]. CIESC Journal, 2022, 73(6): 2334-2351.
1 | Corma A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions[J]. Chemical Reviews, 1995, 95(3): 559-614. |
2 | Zhang Q, Yu J H, Corma A. Applications of zeolites to C1 chemistry: recent advances, challenges, and opportunities[J]. Advanced Materials, 2020, 32(44): 2002927. |
3 | Ivanova I I, Knyazeva E E. Micro-mesoporous materials obtained by zeolite recrystallization: synthesis, characterization and catalytic applications[J]. Chemical Society Reviews, 2013, 42(9): 3671-3688. |
4 | Xie B, Zhang H Y, Yang C G, et al. Seed-directed synthesis of zeolites with enhanced performance in the absence of organic templates[J]. Chemical Communications (Cambridge, England), 2011, 47(13): 3945-3947. |
5 | Iyoki K, Itabashi K, Okubo T. Progress in seed-assisted synthesis of zeolites without using organic structure-directing agents[J]. Microporous and Mesoporous Materials, 2014, 189: 22-30. |
6 | Itabashi K, Kamimura Y, Iyoki K, et al. A working hypothesis for broadening framework types of zeolites in seed-assisted synthesis without organic structure-directing agent[J]. Journal of the American Chemical Society, 2012, 134(28): 11542-11549. |
7 | Yue Y Y, Zhu H B, Wang T H, et al. Green fabrication of hierarchical zeolites from natural minerals[J]. National Science Review, 2020, 7(11): 1632-1634. |
8 | Howell P A. Process for synthetic zeolite A: US3114603[P]. 1963-12-17. |
9 | Haden W L, Dzierzanowski F J. Method for preparing crystalline zeolite catalyst: US3433587[P]. 1969-03-18. |
10 | Haden W L, Dzierzanowski F J. Method for making a faujasite-type crystalline zeolite: US3119659[P]. 1967-08-29. |
11 | Walter L H. Synthetic zeolite contact masses and method for making the same: US3367886[P]. 1968-02-06. |
12 | Brown S M, Woltermann G M. Zeolitized composite bodies and manufacture thereof: US4235753[P]. 1980-11-25. |
13 | Brown S M, Durante V A, Reagan W J, et al. Fluid catalytic cracking catalyst comprising microspheres containing more than about 40 percent by weight Y-faujasite and methods for making: US4493902[P]. 1985-01-15. |
14 | Yue Y Y, Kang Y, Bai Y, et al. Seed-assisted, template-free synthesis of ZSM-5 zeolite from natural aluminosilicate minerals[J]. Applied Clay Science, 2018, 158: 177-185. |
15 | Yue Y Y, Gu L L, Zhou Y N, et al. Template-free synthesis and catalytic applications of microporous and hierarchical ZSM-5 zeolites from natural aluminosilicate minerals[J]. Industrial & Engineering Chemistry Research, 2017, 56(36): 10069-10077. |
16 | Yue Y Y, Liu H Y, Yuan P, et al. From natural aluminosilicate minerals to hierarchical ZSM-5 zeolites: a nanoscale depolymerization-reorganization approach[J]. Journal of Catalysis, 2014, 319: 200-210. |
17 | Yang J B, Liu H Y, Diao H J, et al. A quasi-solid-phase approach to activate natural minerals for zeolite synthesis[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(4): 3233-3242. |
18 | Walter L H. Fluid catalyst and preparation thereof: US3503900[P]. 1970-03-31. |
19 | Lerner B A, Stockwell D M, Madon R J. Modified microsphere FCC catalysts and manufacture thereof: US5559067[P]. 1996-09-24. |
20 | Liu H T, Bao X J, Wei W S, et al. Synthesis and characterization of Kaolin/NaY/MCM-41 composites[J]. Microporous and Mesoporous Materials, 2003, 66(1): 117-125. |
21 | Meor Yusoff M S, Masilana M, Choo T F, et al. Production of high purity alumina and zeolite from low-grade Kaolin[J]. Advanced Materials Research, 2007, 29/30: 187-190. |
22 | Ríos C A, Williams C D, Fullen M A. Nucleation and growth history of zeolite LTA synthesized from kaolinite by two different methods[J]. Applied Clay Science, 2009, 42(3/4): 446-454. |
23 | Wei B Y, Liu H Y, Li T S, et al. Natural rectorite mineral: a promising substitute of Kaolin for in situ synthesis of fluid catalytic cracking catalysts[J]. AIChE Journal, 2010, 56(11): 2913-2922. |
24 | Zhu J, Cui Y, Wang Y, et al. Direct synthesis of hierarchical zeolite from a natural layered material[J]. Chemical Communications (Cambridge, England), 2009(22): 3282-3284. |
25 | Li T S, Liu H Y, Fan Y, et al. Synthesis of zeolite Y from natural aluminosilicate minerals for fluid catalytic cracking application[J]. Green Chemistry, 2012, 14(12): 3255. |
26 | Yue Y Y, Liu H Y, Yuan P, et al. One-pot synthesis of hierarchical FeZSM-5 zeolites from natural aluminosilicates for selective catalytic reduction of NO by NH3 [J]. Scientific Reports, 2015, 5: 9270. |
27 | Yue Y Y, Liu B, Lv N G, et al. Direct synthesis of hierarchical FeCu-ZSM-5 zeolite with wide temperature window in selective catalytic reduction of NO by NH3 [J]. ChemCatChem, 2019, 11(19): 4744-4754. |
28 | Yue Y Y, Liu B, Qin P, et al. One-pot synthesis of FeCu-SSZ-13 zeolite with superior performance in selective catalytic reduction of NO by NH3 from natural aluminosilicates[J]. Chemical Engineering Journal, 2020, 398: 125515. |
29 | Zhou Y N, Liu H Y, Rao X R, et al. Controlled synthesis of ZSM-5 zeolite with an unusual Al distribution in framework from natural aluminosilicate mineral[J]. Microporous and Mesoporous Materials, 2020, 305: 110357. |
30 | Chaisena A, Rangsriwatananon K. Synthesis of sodium zeolites from natural and modified diatomite[J]. Materials Letters, 2005, 59(12): 1474-1479. |
31 | 李铁森. 基于天然硅铝矿物的分子筛绿色合成新方法研究[D]. 北京: 中国石油大学(北京), 2012. |
Li T S. Green synthesis of molecular sieve from natural aluminosilicate minerals[D]. Beijing: China University of Petroleum, 2012. | |
32 | Lee S, Kim Y J, Moon H S. Phase transformation sequence from kaolinite to mullite investigated by an energy-filtering transmission electron microscope[J]. Journal of the American Ceramic Society, 1999, 82(10): 2841-2848. |
33 | Rocha J, Klinowski J. 29Si and 27Al magic-angle-spinning NMR studies of the thermal transformation of kaolinite[J]. Physics and Chemistry of Minerals, 1990, 17(2): 179-186. |
34 | Chandrasekhar S. Influence of metakaolinization temperature on the formation of zeolite 4A from Kaolin[J]. Clay Minerals, 1996, 31(2): 253-261. |
35 | Rocha J. Single- and triple-quantum 27Al MAS NMR study of the thermal transformation of kaolinite[J]. The Journal of Physical Chemistry B, 1999, 103(44): 9801-9804. |
36 | Takahashi H. Effects of dry grinding on Kaolin minerals ( Ⅰ ) : Kaolinite[J]. Bulletin of the Chemical Society of Japan, 1959, 32(3): 235-245. |
37 | Torres Sánchez R M, Basaldella E I, Marco J F. The effect of thermal and mechanical treatments on kaolinite: characterization by XPS and IEP measurements[J]. Journal of Colloid and Interface Science, 1999, 215(2): 339-344. |
38 | Basaldella E I, Kikot A, Pereira E. Synthesis of zeolites from mechanically activated Kaolin clays[J]. Reactivity of Solids, 1990, 8(1/2): 169-177. |
39 | Klevtsov D P, Krivoruchko O P, Mastikhin V M, et al. Influence of mechano-chemical activation and thermal treatment of kaolinite on cation distribution of Al(Ⅲ) and formation of Na-A zeolite[J]. Reaction Kinetics and Catalysis Letters, 1988, 36(2): 319-324. |
40 | Sánchez-Soto P J, del Carmen Jiménez de Haro M, Pérez-Maqueda L A, et al. Effects of dry grinding on the structural changes of kaolinite powders[J]. Journal of the American Ceramic Society, 2000, 83(7): 1649-1657. |
41 | Mysen B O. The structure of silicate melts[J]. Annual Review of Earth and Planetary Sciences, 1983, 11: 75-97. |
42 | Henderson G S, Calas G, Stebbins J F. The structure of silicate glasses and melts[J]. Elements, 2006, 2(5): 269-273. |
43 | Liebau F. Structural Chemistry of Silicates: Structure, Bonding, and Classification[M]. Berlin: Springer-Verlag Berlin Heidelberg, 1985: 80-85. |
44 | Kano J, Saito F. Correlation of powder characteristics of talc during Planetary Ball Milling with the impact energy of the balls simulated by the particle element method[J]. Powder Technology, 1998, 98(2): 166-170. |
45 | Lee S, Kim Y J, Moon H S. Energy-filtering transmission electron microscopy (EF-TEM) study of a modulated structure in metakaolinite, represented by a 14 Å modulation[J]. Journal of the American Ceramic Society, 2003, 86(1): 174-176. |
46 | Dion P, Alcover J F, Bergaya F, et al. Kinetic study by controlled-transformation rate thermal analysis of the dehydroxylation of kaolinite[J]. Clay Minerals, 1998, 33(2): 269-276. |
47 | Sperinck S, Raiteri P, Marks N, et al. Dehydroxylation of kaolinite to metakaolin—a molecular dynamics study[J]. Journal of Materials Chemistry, 2011, 21(7): 2118-2125. |
48 | White C E, Provis J L, Proffen T, et al. Density functional modeling of the local structure of kaolinite subjected to thermal dehydroxylation[J]. The Journal of Physical Chemistry. A, 2010, 114(14): 4988-4996. |
49 | Rocha J, Klinowski J. Solid-state NMR studies of the structure and reactivity of metakaolinite[J]. Angewandte Chemie International Edition in English, 1990, 29(5): 553-554. |
50 | Kingery W D, Bowen H K, Uhlmann D R. Introduction to Ceramics[M]. New York: John Wiley & Sons, Inc., 1976: 359-361. |
51 | Ehrlich H, Demadis K D, Pokrovsky O S, et al. Modern views on desilicification: biosilica and abiotic silica dissolution in natural and artificial environments[J]. Chemical Reviews, 2010, 110(8): 4656-4689. |
52 | Edén M. NMR studies of oxide-based glasses[J]. Annual Reports Section C: Physical Chemistry, 2012, 108(1): 177-221. |
53 | Yarger J L, Smith K H, Nieman R A, et al. Al coordination changes in high-pressure aluminosilicate liquids[J]. Science, 1995, 270(5244): 1964-1967. |
54 | Kouassi S S, Andji J, Bonnet J P, et al. Dissolution of waste glasses in high alkaline solutions[J]. Ceram-silikaty, 2010, 54(3): 235-240. |
55 | 伊莉, 马红超, 付颖寰, 等. 膨润土碱熔活化合成4A分子筛[J]. 应用化学, 2009, 26(12): 1445-1449. |
Yi L, Ma H C, Fu Y H, et al. Synthesis of 4A zeolite from alkali-activated bentonite[J]. Chinese Journal of Applied Chemistry, 2009, 26(12): 1445-1449. | |
56 | Wajima T, Ikegami Y. Synthesis of zeolite-X from waste porcelain using alkali fusion[M]//Ceramic Transactions Series. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010: 305-314. |
57 | Ma H C, Yao Q T, Fu Y H, et al. Synthesis of zeolite of type A from bentonite by alkali fusion activation using Na2CO3 [J]. Industrial & Engineering Chemistry Research, 2010, 49(2): 454-458. |
58 | Ríos R C, Williams C D, Castellanos A O. Synthesis of zeolite LTA from thermally treated kaolinite[J]. Revista Facultad de Ingeniería Universidad de Antioquia, 2010, 53: 30-41. |
59 | Zhu Y L, Chang Z H, Pang J, et al. Synthesis of zeolite 4A from Kaolin and bauxite by alkaline fusion at low temperature[J]. Materials Science Forum, 2011, 685: 298-306. |
60 | Rogers R D, Seddon K R. Ionic liquids: solvents of the future? [J]. Science, 2003, 302(5646): 792-793. |
61 | Angell C A. Ionic liquids in the temperature range 150-1500 K: patterns and problems[M]//Molten Salts and Ionic Liquids. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012: 1-24. |
62 | Tremillon B L. Acid-base effects in molten electrolytes[M]//Molten Salt Chemistry: An Introduction and Selected Applications. Boston: Reidel Publishing Company, 1987: 279-304. |
63 | Casey W H, Westrich H R, Banfield J F, et al. Leaching and reconstruction at the surfaces of dissolving chain-silicate minerals[J]. Nature, 1993, 366(6452), 253-256. |
64 | Zhang Y, Li Z H, Qi T, et al. Green manufacturing process of chromium compounds[J]. Environmental Progress, 2005, 24(1): 44-50. |
65 | Cao S T, Zhang Y F, Zhang Y. Preparation of sodium aluminate from the leach liquor of diasporic bauxite in concentrated NaOH solution[J]. Hydrometallurgy, 2009, 98(3/4): 298-303. |
66 | 刘海燕, 孙鑫艳, 郑涛, 等. 不同活化方法对天然硅铝矿物活化及分子筛合成效果的影响[J]. 燃料化学学报, 2020, 48(3): 328-337. |
Liu H Y, Sun X Y, Zheng T, et al. Effects of activation methods on the activation of natural aluminosilicate minerals and zeolite synthesis[J]. Journal of Fuel Chemistry and Technology, 2020, 48(3): 328-337. | |
67 | 杨金彪. 天然硅铝矿物的拟固相活化及其在分子筛合成中的应用[D]. 北京: 中国石油大学(北京), 2017. |
Yang J B. A quasi-solid-phase approach to activate natural aluminosilicate minerals for zeolite synthesis[D]. Beijing: China University of Petroleum, 2017. | |
68 | Hu Y, Liu X, Xu Z H. Role of crystal structure in flotation separation of diaspore from kaolinite, pyrophyllite and illite[J]. Minerals Engineering, 2003, 16(3): 219-227. |
69 | Murashov V V, Demchuk E. A comparative study of unrelaxed surfaces on quartz and kaolinite, using the periodic density functional theory[J]. The Journal of Physical Chemistry. B, 2005, 109(21): 10835-10841. |
70 | Yue Y Y, Hu Y, Dong P, et al. Mesoscale depolymerization of natural rectorite mineral via a quasi-solid-phase approach for zeolite synthesis[J]. Chemical Engineering Science, 2020, 220: 115635. |
71 | 刁海菊, 天然矿物拟固相活化及A型分子筛合成的研究[D]. 北京: 中国石油大学(北京), 2017. |
Diao H J. Quasi solid-phase activation of natural aluminosilicate mineral and its application in the synthesis of zeolite A[D]. Beijing: China University of Petroleum, 2017. | |
72 | Haden W L, Dzierzanowski F J. Microspherical zeolitic molecular sieve composite catalyst and preparation thereof: US3506594[P]. 1970-04-14. |
73 | Walter L H, Frank J D. Zeolite catalyst and preparation: US3506594[P]. 1972-05-16. |
74 | Tan Q F, Bao X J, Song T C, et al. Synthesis, characterization, and catalytic properties of hydrothermally stable macro-meso-micro-porous composite materials synthesized via in situ assembly of preformed zeolite Y nanoclusters on Kaolin[J]. Journal of Catalysis, 2007, 251(1): 69-79. |
75 | Zhang L N, Liu H Y, Yue Y Y, et al. Design and in situ synthesis of hierarchical SAPO-34@kaolin composites as catalysts for methanol to olefins[J]. Catalysis Science & Technology, 2019, 9(22): 6438-6451. |
76 | Ding J J, Liu H Y, Yuan P, et al. Catalytic properties of a hierarchical zeolite synthesized from a natural aluminosilicate mineral without the use of a secondary mesoscale template[J]. ChemCatChem, 2013, 5(8): 2258-2269. |
77 | Hincapie B O, Garces L J, Zhang Q H, et al. Synthesis of mordenite nanocrystals[J]. Microporous and Mesoporous Materials, 2004, 67(1): 19-26. |
78 | Dakhchoune M, Villalobos L F, Semino R, et al. Gas-sieving zeolitic membranes fabricated by condensation of precursor nanosheets[J]. Nature Materials, 2021, 20: 362–369. |
79 | Dai H, Shen Y F, Yang T M, et al. Finned zeolite catalysts[J]. Nature Materials, 2020, 19(10): 1074-1080. |
80 | Meng X J, Xiao F S. Green routes for synthesis of zeolites[J]. Chemical Reviews, 2014, 114(2): 1521-1543. |
81 | Novak S, Chaves T F, Martins L, et al. Preparation of hydrophobic MFI zeolites containing hierarchical micro-mesopores using seeds functionalized with octyltriethoxysilane[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585: 124109. |
82 | 刘海燕, 郑涛, 鲍晓军. 一种等级孔丝光沸石的合成方法: 108793184[P]. 2020-08-18. |
Liu H Y, Zheng T, Bao X J. A synthetic method of hierarchical mordenite: 108793184[P]. 2020-08-18. | |
83 | 刘海燕, 郑涛, 刘植昌, 等. 一种晶种法合成硅铝酸盐分子筛的方法: 110526260B[P]. 2021-07-27. |
Liu H Y, Zheng T, Liu Z C, et al. Method for synthesizing aluminosilicate molecular sieve by seed crystal method: 110526260B[P]. 2021-07-27. | |
84 | Yang J B, Li T S, Bao X J, et al. Mesoporogen-free synthesis of hierarchical sodalite as a solid base catalyst from sub-molten salt-activated aluminosilicate[J]. Particuology, 2020, 48: 48-54. |
85 | Araújo R S, Azevedo D C S, Rodríguez-Castellón E, et al. Al and Ti-containing mesoporous molecular sieves: synthesis, characterization and redox activity in the anthracene oxidation[J]. Journal of Molecular Catalysis A: Chemical, 2008, 281(1/2): 154-163. |
86 | Zhou Y, Zhang J L, Wang L, et al. Self-assembled iron-containing mordenite monolith for carbon dioxide sieving[J]. Science, 2021, 373(6552): 315-320. |
87 | Sazama P, Sathu N K, Tabor E, et al. Structure and critical function of Fe and acid sites in Fe-ZSM-5 in propane oxidative dehydrogenation with N2O and N2O decomposition[J]. Journal of Catalysis, 2013, 299: 188-203. |
88 | Koekkoek A J, Kim W, Degirmenci V, et al. Catalytic performance of sheet-like Fe/ZSM-5 zeolites for the selective oxidation of benzene with nitrous oxide[J]. Journal of Catalysis, 2013, 299: 81-89. |
89 | Rankel L A, Valyocsik E W. Process for the preparation of ZSM-5 utilizing transition metal complexes during crystallization: US4388285[P]. 1983-06-14. |
90 | Guo D D, Shen B J, Qi G D, et al. Unstable-Fe-site-induced formation of mesopores in microporous zeolite Y without using organic templates[J]. Chemical Communications (Cambridge, England), 2014, 50(20): 2660-2663. |
91 | Pérez-Ramírez J, Mul G, Kapteijn F, et al. Physicochemical characterization of isomorphously substituted FeZSM-5 during activation[J]. Journal of Catalysis, 2002, 207(1): 113-126. |
92 | Liu H Y, Yue Y Y, Shen T, et al. Transformation and crystallization behaviors of titanium species in synthesizing Ti-ZSM-5 zeolites from natural rectorite mineral[J]. Industrial & Engineering Chemistry Research, 2019, 58(27): 11861-11870. |
93 | Li N, Li T S, Liu H Y, et al. A novel approach to synthesize in situ crystallized zeolite/Kaolin composites with high zeolite content[J]. Applied Clay Science, 2017, 144: 150-156. |
[1] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
[2] | 王子健, 柯明, 李佳涵, 李舒婷, 孙巾茹, 童燕兵, 赵治平, 刘加英, 任璐. 短b轴ZSM-5分子筛制备方法及应用研究进展[J]. 化工学报, 2023, 74(4): 1457-1473. |
[3] | 王荣, 王永洪, 张新儒, 李晋平. 6FDA型聚酰亚胺炭分子筛气体分离膜的构筑及其应用[J]. 化工学报, 2023, 74(4): 1433-1445. |
[4] | 白宇恩, 张彬瑞, 刘东阳, 赵亮, 高金森, 徐春明. ZSM-5分子筛酸性能和孔结构的协同作用对C5烯烃催化裂解性能的影响[J]. 化工学报, 2023, 74(1): 438-448. |
[5] | 周晨阳, 贾颖, 赵跃民, 张勇, 付芝杰, 冯昱清, 段晨龙. 介尺度视角下干法重介流态化分选过程强化[J]. 化工学报, 2022, 73(6): 2452-2467. |
[6] | 蒋鸣, 周强. 气固流化床介尺度结构形成机制及过滤曳力模型研究进展[J]. 化工学报, 2022, 73(6): 2468-2485. |
[7] | 朱嫣然, 葛亮, 李兴亚, 徐铜文. 三相结构离子交换膜的构筑及应用研究[J]. 化工学报, 2022, 73(6): 2397-2414. |
[8] | 李丽媛, 王建强, 陈奕, 郭友娣, 周健, 刘志成, 王仰东, 谢在库. 甲醇制丙烯反应中ZSM-5分子筛催化剂积炭失活介尺度机制研究[J]. 化工学报, 2022, 73(6): 2669-2676. |
[9] | 李铁男, 赵碧丹, 赵鹏, 张永民, 王军武. 气固流化床启动阶段挡板内构件受力特性的CFD-DEM模拟[J]. 化工学报, 2022, 73(6): 2649-2661. |
[10] | 郑默, 李晓霞. ReaxFF MD模拟揭示的煤热解挥发分自由基反应的竞争与协调[J]. 化工学报, 2022, 73(6): 2732-2741. |
[11] | 孟博, 刘艳萍, 蒋新科, 韩一帆. Fe5C2-MnO x 尺度调控及催化合成气制烯烃性能研究[J]. 化工学报, 2022, 73(6): 2677-2689. |
[12] | 马永丽, 刘明言, 胡宗定. 气液固流化床流动介尺度模型研究进展[J]. 化工学报, 2022, 73(6): 2438-2451. |
[13] | 王忠东, 朱春英, 马友光, 付涛涛. 并行微通道内液液两相流及介尺度效应[J]. 化工学报, 2022, 73(6): 2563-2572. |
[14] | 王婵, 肖国锡, 郭小雪, 徐人威, 岳源源, 鲍晓军. 基于介尺度结构解聚-重组装的Beta分子筛的绿色合成及应用[J]. 化工学报, 2022, 73(6): 2690-2697. |
[15] | 孔令菲, 陈延佩, 王维. 气固流态化中颗粒介尺度结构的动力学研究[J]. 化工学报, 2022, 73(6): 2486-2495. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||