1 |
张超, 王坤. 制冷空调系统替代工质的发展现状及方向[J]. 低温与超导, 2005, 33(4): 69-72+77.
|
|
ZhangC, WangK. The development status and direction of replacing the working quality of refrigeration air-conditioning system[J]. Cryogenics and Superconductivity, 2005, 33(4): 69-72+77.
|
2 |
RinY, YongC K, MinS K, et al. Boiling heat transfer and dryout phenomenon of CO2 in a horizontal smooth tube[J]. International Journal of Heat and Mass Transfer, 2003, 45: 2353-2361.
|
3 |
GungorK E, WintertonR H S. A general correlation for flow boiling in tubes and annuli[J]. Int. J. Heat Mass Transfer, 1986, 29: 351-358.
|
4 |
SeokH Y, EunS C, YunW H, et al. Characteristics of evaporative heat transfer and pressure drop of carbon dioxide and correlation development[J]. International Journal of Refrigeration, 2004, 27: 111-119.
|
5 |
GungorK E, WintertonR H S. Simplified general correlation for saturated flow boiling and comparison with data[J]. Chem. Eng. Res. Des., 1987, 65: 148-156.
|
6 |
JungD S, MclindenM, RadermacherR, et al. A study of flow boiling heat transfer with refrigerant mixtures[J]. Int. J. Heat Mass Transfer, 1989, 32(9): 1751-1764.
|
7 |
KandlikarS G. A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes[J]. Journal of Heat Transfer, 1990, 112: 219-228.
|
8 |
LiuZ, WintertonR H S. A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation[J]. Int. J. Heat Mass Transfer, 1991, 34(11): 2759-2766.
|
9 |
HwangY, KimB H, RadermacherR. Boiling heat transfer correlation for carbon dioxide[C]//College Park (MD, USA): ⅡF-ⅡR Commission B1, with E1&E2. 1997: 81-95.
|
10 |
ParkC Y, HrnjakP S. CO2 and R410A flow boiling heat transfer, pressure drop, and flow pattern at flow temperature in a horizontal smooth tube[J]. International Journal of Refrigeration, 2007, 30: 166-178.
|
11 |
ShahM M. Chart correlation for saturated boiling heat transfer: equation and further study[J]. ASHRAE Trans., 1982, 88: 185-196.
|
12 |
WatteletJ P. Heat transfer flow regimes of refrigerants in a horizontal-tube evaporator[C]//Acrc. Tr-55. University of Illinois at Urbana-Champaign, 1994.
|
13 |
ChengL X, GherhardtR, JohnR T. New prediction methods for CO2 Evaporation inside tubes (Ⅱ): An updated general flow boiling heat transfer model based on flow patterns[J]. Int. J. Heat Mass Transfer, 2008, 51: 125-135.
|
14 |
HooK O, HakG K, GeonS R, et al. Flow boiling heat transfer characteristics of carbon dioxide in a horizontal tube[J]. Applied Thermal Engineering, 2008, 28: 1022-1030.
|
15 |
DucoulombierM, ColassonS, BonjourJ, et al. Carbon dioxide flow boiling in a single microchannel (Ⅱ): Heat transfer[J]. Experimental Thermal and Fluid Science, 2011, 35: 597-611.
|
16 |
HiharaE, TanakaS. Boiling heat transfer of carbon dioxide in horizontal tubes[C]//Proceedings of the 4th ⅡR Gustav Lorentzen Conference on Natural Working Fluids. 2000: 279-284.
|
17 |
KandlikarS G, SteinkeM E. Predicting heat transfer during flow boiling in minichannels and microchannels[J]. ASHRAE Trans., 2003, 109: 667-676.
|
18 |
FangX D, ZhouZ R, LiD K. Review of correlations of flow boiling heat transfer coefficients for carbon dioxide[J]. International Journal of Refrigeration, 2013, 36: 2017-2039.
|
19 |
FangX D. A new correlation of flow boiling heat transfer coefficients for carbon dioxide[J]. Int. J. Heat Mass Transfer, 2013, 64: 802-807.
|
20 |
ChoiK, PamitranA S, OhJ T. Two-phase flow heat transfer of CO2 vaporization in smooth horizontal minichannels[J]. International Journal of Refrigeration, 2007, 30: 767-777.
|
21 |
WangJ, OgasawaraS, HiharaE. Boiling heat transfer and air coil evaporator of carbon dioxide[C]//Proceedings of the 21st ⅡR International Congress of Refrigeration.2003.
|
22 |
TanakaS, DaigujiH, TakemukaF, et al. Boiling heat transfer of carbon dioxide in horizontal tubes[C]//Proceeding of 38th National Heat Transfer Symposium of Japan. Saitama, Japan, 2001: 899-900.
|
23 |
ChenJ C. Correlation for boiling heat transfer to saturated fluids in convective flow[J]. I&EC Process Design and Development, 1966, 5(3): 322-329.
|
24 |
PamitranA S, ChoiK, OhJ T, et al. Evaporation heat transfer coefficient in single circular small tubes for flow natural refrigerants of C3H8, NH3, and CO2[J]. Int. J. Multiphase Flow, 2011, 37: 794-801.
|
25 |
杨建超, 柳建华, 张良, 等. 二氧化碳环内沸腾传热系数关联式的分析[J]. 低温与超导, 2011, 39(11): 72-76.
|
|
YangJ C, LiuJ H, ZhangL, et al. Analysis of heat transfer correlation for CO2 in-tube flow boiling[J]. Cryogenics & Superconductivity, 2011, 39(11): 72-76.
|
26 |
ArndtE S, MatthiasK. Flow pattern and heat transfer characteristics during flow boiling of CO2 in a horizontal micro fin tube and comparison with smooth tube data[J]. International Journal of Refrigeration, 2005, 28: 1186-1195.
|
27 |
姜琳琳, 柳建华, 张良, 等. 水平微细管内CO2流动沸腾换热特性[J]. 化工学报, 2018, 69(4): 1428-1436.
|
|
JiangL L, LiuJ H, ZhangL, et al. Investigation of flow boiling heat transfer characteristics of CO2 in horizontal micro-tube[J]. CIESC Journal, 2018, 69(4): 1428-1436.
|
28 |
赵红艺. 二氧化碳在细管径内蒸发换热特性和压降的实验研究[D]. 北京: 清华大学, 2004.
|
|
ZhaoH Y. Experimental study on boiling heat transfer characteristics and pressure drop of CO2[D]. Beijing: Tsinghua University, 2004.
|
29 |
胡静, 杨俊兰, 杜明星. CO2-润滑油水平光管内流动沸腾换热特性[J]. 燃气与热力, 2013, 33(4): A13-A17.
|
|
HuJ, YangJ L, DuM X. The flow boiling heat transfer characteristics of CO2-lubricating oil in a horizontal smooth tube[J]. Gas & Heat, 2013, 33(4): A13-A17.
|
30 |
陆至羚, 柳建华, 张良, 等. 微细通道内CO2沸腾换热与干涸特性[J]. 化工进展, 2015, 34(8): 2961-2966.
|
|
LuZ L, LiuJ H, ZhangL, et al. Heat transfer and dry-out characteristics of CO2 in mini-channel[J]. Chemical Industry and Engineering Progress, 2015, 34(8): 2961-2966.
|
31 |
张良, 柳建华, 叶方平, 等. 细微通道内低温CO2流 动沸腾换热特性研究[J]. 热能动力工程, 2014, 29(3): 262-266.
|
|
ZhangL, LiuJ H, YeF P, et al. Study on heat transfer characteristics of low temperature CO2 flow in mini-channel[J]. Journal of Engineering for Thermal Energy and Power, 2014, 29(3): 262-266.
|
32 |
杨俊兰, 赵丽娜. CO2/润滑油混合物在水平管内流动沸腾换热的实验研究[J]. 流体机械, 2015, 43(11): 1-5.
|
|
YangJ L, ZhaoL N. Experimental study the flow boiling heat transfer of CO2/ lubricating oil mixture in horizontal tube[J]. Fluid Machinery, 2015, 43(11): 1-5.
|
33 |
吴晓敏, 赵红艺, 王维成, 等. CO2在细径管内蒸发换热的实验研究[J]. 工程热物理学报, 2005, 26(5): 823-825
|
|
WuX M, ZhaoH Y, WangW C, et al. Experimental study on evaporating heat transfer of CO2 in thin tube[J]. Journal of Engineering Thermophysics, 2005, 26(5): 823-825.
|
34 |
马富芹. 水平微小通道内CO2沸腾换热研究 [D]. 上海: 东华大学, 2004.
|
|
MaF Q. Boiling heat transfer of CO2 in a horizontal mini-tube[D]. Shanghai: Donghua University, 2004.
|
35 |
HooK O, ChangH S. Flow boiling heat transfer and pressure drop characteristics of in horizontal tube of 4.57 mm inner diameter[J]. Applied Thermal Engineering, 2011, 31: 163-172.
|
36 |
MastrulloR, MauroA W, RosatoA, et al. Carbon dioxide local heat transfer coefficients during flow boiling in a horizontal circular smooth tube[J]. Int. J. Heat Mass Transfer, 2009, 52: 4184-4194.
|
37 |
MastrulloR, MauroA W, RosatoA, et al. Carbon dioxide local heat transfer and pressure drops during flow boiling: assessment of predictive methods[J]. International Journal of Refrigeration, 2010, 33: 1068-1085.
|
38 |
宫小彬, 柳建华, 张良, 等. 二氧化碳管内流动沸腾换热特性实验研究进展[C]//中国制冷学会学术年会. 2009.
|
|
GongX B, LiuJ H, ZhangL, et al. Review of experimental study on in-tube carbon dioxide flow boiling heat transfer characteristics[C]//Academic Annual Meeting of China Institute of Refrigeration. 2009.
|
39 |
GaoL, TomohiroH. An experimental study on flow boiling heat transfer of carbon dioxide and oil mixtures inside a horizontal smooth tube[C]//Proceedings of ⅡR 2005 Vicenza Conference-Thermophysical Properties and Transfer of Refrigerants.Vicenza, 2005.
|
40 |
KewP A, CornwellK. Correlations for prediction of boiling heat transfer in small-diameter channels[J]. Appl. Therm. Eng., 1997, 17: 705-715.
|
41 |
ChengP, WuH Y, HongF J. Phase-change heat transfer in microsystems[J]. Heat Transfer, 2007, 129: 101-107.
|
42 |
KandlikarS G, GrandeW J. Evolution of micro-channel flow passages-thermohydraulic performance and fabrication technology[J]. Heat Transfer Eng., 2003, 24(1): 3-17.
|