化工学报 ›› 2023, Vol. 74 ›› Issue (9): 3797-3806.DOI: 10.11949/0438-1157.20230784
王玉兵1,2(), 李杰1, 詹宏波2, 朱光亚1, 张大林1()
收稿日期:
2023-08-01
修回日期:
2023-09-04
出版日期:
2023-09-25
发布日期:
2023-11-20
通讯作者:
张大林
作者简介:
王玉兵(1980—),男,博士研究生, jl1901031@nuaa.edu.cn
基金资助:
Yubing WANG1,2(), Jie LI1, Hongbo ZHAN2, Guangya ZHU1, Dalin ZHANG1()
Received:
2023-08-01
Revised:
2023-09-04
Online:
2023-09-25
Published:
2023-11-20
Contact:
Dalin ZHANG
摘要:
研究了制冷剂R134a在角度分别为30°、60°和90°的菱形离散肋微小通道内的流动沸腾换热特性。微小通道内菱形离散肋分布区域长300 mm、宽20 mm,进口处饱和压力为(700±5) kPa,其他工况范围为:干度0~1,质量流率200~500 kg/(m2·s),热通量10~30 kW/m2。实验结果表明:离散肋中的流动沸腾换热受到核态沸腾和对流沸腾的共同作用,传热系数随质量流率和热通量的增加而增加,但随着干度的升高,热通量的作用减弱并趋于消失。此外,离散肋结构对流动沸腾换热有显著影响,相同工况下,90°菱形离散肋的传热系数高于30°和60°,且在高干度更显著。最后,基于实验数据和分析结论,提出了一个适用于预测不同结构离散肋微小通道中流动沸腾传热系数的计算关联式。
中图分类号:
王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806.
Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array[J]. CIESC Journal, 2023, 74(9): 3797-3806.
参数 | 实验范围 |
---|---|
G/(kg/(m2·s)) | 200~500 |
Psat,e/kPa | 700 |
q/(kW/m2) | 10~30 |
x | 0~1 |
表1 实验工况
Table 1 The experimental operating condition
参数 | 实验范围 |
---|---|
G/(kg/(m2·s)) | 200~500 |
Psat,e/kPa | 700 |
q/(kW/m2) | 10~30 |
x | 0~1 |
编号 | θ/(°) | SL/mm | ST/mm | Sg/mm | h/mm | Wf/mm | Lf/mm | NL |
---|---|---|---|---|---|---|---|---|
D30 | 30 | 5.41 | 2 | 1.4 | 0.5 | 1 | 3.73 | 56 |
D60 | 60 | 2.80 | 2 | 1.4 | 0.5 | 1 | 1.73 | 108 |
D90 | 90 | 1.98 | 2 | 1.4 | 0.5 | 1 | 1.00 | 152 |
表 2 微小菱形离散肋几何尺寸
Table 2 Structure size of mini channel with diamond pin fin array
编号 | θ/(°) | SL/mm | ST/mm | Sg/mm | h/mm | Wf/mm | Lf/mm | NL |
---|---|---|---|---|---|---|---|---|
D30 | 30 | 5.41 | 2 | 1.4 | 0.5 | 1 | 3.73 | 56 |
D60 | 60 | 2.80 | 2 | 1.4 | 0.5 | 1 | 1.73 | 108 |
D90 | 90 | 1.98 | 2 | 1.4 | 0.5 | 1 | 1.00 | 152 |
计算参数 | 不确定度 |
---|---|
P | 0.2% |
G | 0.25% |
T | ±0.2℃ |
q | 0.5% |
xk | ±2.4% |
htp | ±10.5% |
表3 参数不确定度
Table 3 Uncertainty of calculation parameters
计算参数 | 不确定度 |
---|---|
P | 0.2% |
G | 0.25% |
T | ±0.2℃ |
q | 0.5% |
xk | ±2.4% |
htp | ±10.5% |
文献 | 关联式形式 | 工况范围 |
---|---|---|
[ | 顺排的方形肋 工质:R-113 G: 50~250 kg/(m2·s) q: 0.5~14 W/cm2 P:1 bar | |
[ | 交错排列的圆形肋 工质:水 G: 346~794 kg/(m2·s) q: 50~350 W/cm2 P:1 bar | |
[ | 平直微通道 数据来自37篇文献,包括18种流体工质 | |
[ | 交错排列的菱形肋 工质:R134a G: 200~500 kg/(m2·s) q: 15~30 kW/m2 P:5~7 bar |
表4 现有沸腾换热关联式
Table 4 Formulations of the selected existing correlations
文献 | 关联式形式 | 工况范围 |
---|---|---|
[ | 顺排的方形肋 工质:R-113 G: 50~250 kg/(m2·s) q: 0.5~14 W/cm2 P:1 bar | |
[ | 交错排列的圆形肋 工质:水 G: 346~794 kg/(m2·s) q: 50~350 W/cm2 P:1 bar | |
[ | 平直微通道 数据来自37篇文献,包括18种流体工质 | |
[ | 交错排列的菱形肋 工质:R134a G: 200~500 kg/(m2·s) q: 15~30 kW/m2 P:5~7 bar |
文献 | D30 | D60 | D90 | |||
---|---|---|---|---|---|---|
MAD/% | MRD/% | MAD/% | MRD/% | MAD/% | MRD/% | |
[ | 42.38 | -42.38 | 43.14 | -43.14 | 42.75 | -42.75 |
[ | 20.80 | -19.97 | 23.04 | -22.53 | 21.57 | -21.21 |
[ | 156.28 | 156.28 | 148.00 | 148.00 | 141.05 | 141.05 |
[ | 19.62 | 7.16 | 15.70 | -1.1 | 27.64 | -21.69 |
本文 | 18.75 | 4.26 | 15.20 | 0.84 | 18.30 | 6.03 |
表5 关联式的预测精度
Table 5 Prediction accuracy of the correlations
文献 | D30 | D60 | D90 | |||
---|---|---|---|---|---|---|
MAD/% | MRD/% | MAD/% | MRD/% | MAD/% | MRD/% | |
[ | 42.38 | -42.38 | 43.14 | -43.14 | 42.75 | -42.75 |
[ | 20.80 | -19.97 | 23.04 | -22.53 | 21.57 | -21.21 |
[ | 156.28 | 156.28 | 148.00 | 148.00 | 141.05 | 141.05 |
[ | 19.62 | 7.16 | 15.70 | -1.1 | 27.64 | -21.69 |
本文 | 18.75 | 4.26 | 15.20 | 0.84 | 18.30 | 6.03 |
编号 | a | b |
---|---|---|
D30 | 0.024 | 0.92 |
D60 | 0.019 | 0.95 |
D90 | 0.013 | 0.99 |
表6 参数a、b的取值
Table 6 The values of factor a and b
编号 | a | b |
---|---|---|
D30 | 0.024 | 0.92 |
D60 | 0.019 | 0.95 |
D90 | 0.013 | 0.99 |
1 | Mohammadi A, Koşar A. Review on heat and fluid flow in micro pin fin heat sinks under single-phase and two-phase flow conditions[J]. Nanoscale and Microscale Thermophysical Engineering, 2018, 22(3): 153-197. |
2 | 王乐, 翁建华. 微柱群流动及换热研究进展[J]. 化工进展, 2020, 39(11): 4330-4341. |
Wang L, Weng J H. Research progress of flow and heat transfer in micro-pin-fins[J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4330-4341. | |
3 | 魏进家, 张永海. 柱状微结构表面强化沸腾换热研究综述[J]. 化工学报, 2016, 67(1): 97-108. |
Wei J J, Zhang Y H. Review of enhanced boiling heat transfer over micro-pin-finned surfaces[J]. CIESC Journal, 2016, 67(1): 97-108. | |
4 | Cheng L X, Xia G D. High heat flux cooling technologies using microchannel evaporators: fundamentals and challenges[J]. Heat Transfer Engineering, 2023, 44(16/17/18): 1470-1497. |
5 | Koşar A, Peles Y. Boiling heat transfer in a hydrofoil-based micro pin fin heat sink[J]. International Journal of Heat and Mass Transfer, 2007, 50(5/6): 1018-1034. |
6 | Sun R R, Hua J Y, Zhang X Q, et al. Experimental study on the effect of shape on the boiling flow and heat transfer characteristics of different pin-fin microchannels[J]. Heat and Mass Transfer, 2021, 57(12): 2081-2095. |
7 | Zhao Z X, Hu B, He J, et al. Effect of fin shapes on flow boiling heat transfer with staggered fin arrays in a heat sink[J]. Applied Thermal Engineering, 2023, 225: 120179. |
8 | 史一涛, 曹瑞, 阮琳. 方形肋阵参数变化对流动沸腾换热影响的实验研究[J]. 电工技术学报, 2022, 37(5): 1275-1284. |
Shi Y T, Cao R, Ruan L. Experimental study on the influence of parameter change of square rib on flow boiling heat transfer[J]. Transactions of China Electrotechnical Society, 2022, 37(5): 1275-1284. | |
9 | 孙瑞瑞, 张经, 华君叶, 等. 开口结构对微肋阵沸腾换热及气泡动态生长特性的影响[J]. 制冷学报, 2022, 43(1): 108-115. |
Sun R R, Zhang J, Hua J Y, et al. Effect of open structure on boiling heat transfer and bubble dynamic growth characteristics of micro fin array[J]. Journal of Refrigeration, 2022, 43(1): 108-115. | |
10 | Deng D, Zeng L, Sun W, et al. Experimental study of flow boiling performance of open-ring pin fin microchannels[J]. International Journal of Heat and Mass Transfer, 2021, 167: 120829. |
11 | Ma X, Ji X Y, Wang J Y, et al. Flow boiling heat transfer characteristics on micro-pin-finned surfaces in a horizontal narrow microchannel[J]. International Journal of Heat and Mass Transfer, 2022, 194: 123071. |
12 | Feng S, Yan Y F, Lai C G. Experimental study on flow boiling characteristics of hybrid micro-channels with gradient distribution Pillars and bypass[J]. International Journal of Heat and Mass Transfer, 2022, 186: 122468. |
13 | Yan Y F, Wu J H, Xu F L, et al. Experimental investigation on flow and heat transfer characteristics of the drop-pressure microchannel heat sink with gradient distribution pin fin arrays and narrow slots[J]. Applied Thermal Engineering, 2023, 233: 121084. |
14 | Markal B, Kul B, Avci M, et al. Effect of gradually expanding flow passages on flow boiling of micro pin fin heat sinks[J]. International Journal of Heat and Mass Transfer, 2022, 197: 123355. |
15 | Reeser A, Bar-Cohen A, Hetsroni G. High quality flow boiling heat transfer and pressure drop in microgap pin fin arrays[J]. International Journal of Heat and Mass Transfer, 2014, 78: 974-985. |
16 | Lie Y M, Ke J H, Chang W R, et al. Saturated flow boiling heat transfer and associated bubble characteristics of FC-72 on a heated micro-pin-finned silicon chip[J]. International Journal of Heat and Mass Transfer, 2007, 50(19/20): 3862-3876. |
17 | McNeil D A, Raeisi A H, Kew P A, et al. A comparison of flow boiling heat-transfer in in-line mini pin fin and plane channel flows[J]. Applied Thermal Engineering, 2010, 30(16): 2412-2425. |
18 | Krishnamurthy S, Peles Y. Flow boiling of water in a circular staggered micro-pin fin heat sink[J]. International Journal of Heat and Mass Transfer, 2008, 51(5/6): 1349-1364. |
19 | Ma A X, Wei J J, Yuan M Z, et al. Enhanced flow boiling heat transfer of FC-72 on micro-pin-finned surfaces[J]. International Journal of Heat and Mass Transfer, 2009, 52(13/14): 2925-2931. |
20 | Qu W L, Siu-Ho A. Experimental study of saturated flow boiling heat transfer in an array of staggered micro-pin-fins[J]. International Journal of Heat and Mass Transfer, 2009, 52(7/8): 1853-1863. |
21 | Isaacs S A, Kim Y J, McNamara A J, et al. Two-phase flow and heat transfer in pin-fin enhanced micro-gaps[C]//13th Inter Society Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. San Diego, CA: IEEE, 2012: 1084-1089. |
22 | 李慧君, 郭保仓, 杜保周, 等. 微柱群通道内饱和沸腾换热特性实验研究[J]. 制冷学报, 2018, 39(3): 44-50. |
Li H J, Guo B C, Du B Z, et al. Experimental study of saturated flow boiling heat transfer in an array of micro-pin-fins[J]. Journal of Refrigeration, 2018, 39(3): 44-50. | |
23 | David T, Mendler D, Mosyak A, et al. Thermal management of time-varying high heat flux electronic devices[J]. Journal of Electronic Packaging, 2014, 136(2): 021003. |
24 | Falsetti C, Jafarpoorchekab H, Magnini M, et al. Two-phase operational maps, pressure drop, and heat transfer for flow boiling of R236fa in a micro-pin fin evaporator[J]. International Journal of Heat and Mass Transfer, 2017, 107: 805-819. |
25 | Szczukiewicz S, Magnini M, Thome J R. Proposed models, ongoing experiments, and latest numerical simulations of microchannel two-phase flow boiling[J]. International Journal of Multiphase Flow, 2014, 59: 84-101. |
26 | Li J, Zhang D L, Wang Y B, et al. Pressure drop of R134a in mini channels with micro pin fins during flow boiling[J]. Applied Thermal Engineering, 2022, 217: 119195. |
27 | Wen T, Zhan H B, Zhang D L. Flow boiling heat transfer in mini channel with serrated fins: experimental investigation and development of new correlation[J]. International Journal of Heat and Mass Transfer, 2019, 128: 1081-1094. |
28 | Wang Y B, Li J, Zhang D L, et al. Investigation of the flow boiling performance in mini channel with micro pin fin[J]. Heat and Mass Transfer, 2023, 59(8): 1543-1563. |
29 | Kim S M, Mudawar I. Universal approach to predicting saturated flow boiling heat transfer in mini/micro-channels (Ⅱ): Two-phase heat transfer coefficient[J]. International Journal of Heat and Mass Transfer, 2013, 64: 1239-1256. |
30 | Fang X D, Zhuang F T, Chen C, et al. Saturated flow boiling heat transfer: review and assessment of prediction methods[J]. Heat and Mass Transfer, 2019, 55(1): 197-222. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[3] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[4] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[5] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[6] | 苏伟, 马东旭, 金旭, 刘忠彦, 张小松. 表面润湿性对霜层传递特性影响可视化实验研究[J]. 化工学报, 2023, 74(S1): 122-131. |
[7] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[8] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[9] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[10] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[11] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[12] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[13] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[14] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[15] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||