1 |
代宝民, 剧成成, 粱梦桃, 等. 机械过冷跨临界CO2热泵供暖系统性能分析[J]. 制冷学报, 2019, 40(4): 29-36.
|
|
Dai B M, Ju C C, Liang M T, et al. Performance analysis of a transcritical CO2 heat pump with mechanical subcooling for space heating[J]. Journal of Refrigeration, 2019, 40(4): 29-36.
|
2 |
李敏霞, 王派, 马一太, 等. 转子压缩机与涡旋压缩机的对比与发展[J]. 制冷学报, 2019, 40(1): 22-28, 78.
|
|
Li M X, Wang P, Ma Y T, et al. Comparison and development of rotary and scroll compressor[J]. Journal of Refrigeration, 2019, 40(1): 22-28, 78.
|
3 |
王派, 李敏霞, 马一太, 等. 我国空调与热泵的能效和标准现状与分析[J]. 制冷学报, 2018, 39(3): 65-72.
|
|
Wang P, Li M X, Ma Y T, et al. Current situation and prospect of air conditioning and heat pump energy efficiency and standard in China[J]. Journal of Refrigeration, 2018, 39(3): 65-72.
|
4 |
代宝民, 刘圣春, 孙志利, 等. 采用非共沸混合工质机械过冷的跨临界CO2制冷循环性能分析[J]. 制冷学报, 2018, 39(6): 46-53, 69.
|
|
Dai B M, Liu S C, Sun Z L, et al. Performance analysis of transcritical CO2 refrigeration cycle with mechanical subcooling employing zeotropic mixture as working fluid[J]. Journal of Refrigeration, 2018, 39(6): 46-53, 69.
|
5 |
王派, 李敏霞, 宋瑞涛, 等. CO2跨(亚)临界制冷人工冰场的分析与研究[J]. 制冷技术, 2020, 40(2): 25-30.
|
|
Wang P, Li M X, Song R T, et al. Analysis and research on artificial ice rink with CO2 transcritical/subcritical cooling[J]. Chinese Journal of Refrigeration Technology, 2020, 40(2): 25-30.
|
6 |
李敏霞, 詹浩淼, 王派, 等. 一种带引射器和经济器的CO2跨临界制冷系统[J]. 化工学报, 2021, 72(S1): 146-152.
|
|
Li M X, Zhan H M, Wang P, et al. A CO2 transcritical refrigeration system with ejector and economizer[J]. CIESC Journal, 2021, 72(S1): 146-152.
|
7 |
李沛昀, 李杨, 王文彬, 等. 三角转子膨胀机在跨临界CO2制冷循环中的应用分析[J]. 化工学报, 2021, 72(S1): 161-169.
|
|
Li P Y, Li Y, Wang W B, et al. Application analysis of Wankel expander in CO2 trans-critical refrigeration cycle[J]. CIESC Journal, 2021, 72(S1): 161-169.
|
8 |
王冠邦, 张信荣. 冰上运动场馆中的CO2热力学系统综述[J]. 制冷技术, 2020, 40(2): 31-37, 45.
|
|
Wang G B, Zhang X R. Review of CO2 thermodynamic system for ice rinks[J]. Chinese Journal of Refrigeration Technology, 2020, 40(2): 31-37, 45.
|
9 |
Li M X. Flow boiling heat transfer of carbon dioxide with PAG-type lubricating oil in pre-dryout region inside horizontal tube[J]. International Journal of Refrigeration, 2014, 41: 45-59.
|
10 |
Yun R. Post-dryout heat transfer characteristics in horizontal mini-tubes and a prediction method for flow boiling of CO2 [J]. International Journal of Refrigeration, 2009, 32(5): 1085-1091.
|
11 |
Cheng L X. Flow boiling heat transfer and two-phase flow phenomena of CO2 in macro- and micro-channel evaporators: fundamentals, applications and engineering design[J]. Applied Thermal Engineering, 2021, 195: 117070.
|
12 |
Schael A E. Flow pattern and heat transfer characteristics during flow boiling of CO2 in a horizontal micro fin tube and comparison with smooth tube data[J]. International Journal of Refrigeration, 2005, 28(8): 1186-1195.
|
13 |
Dang C B. Flow boiling heat transfer of carbon dioxide inside a small-sized microfin tube[J]. International Journal of Refrigeration, 2010, 33(4): 655-663.
|
14 |
Dang C B. Effect of lubricating oil on flow boiling heat transfer of carbon dioxide[J]. International Journal of Refrigeration, 2013, 36(1): 136-144.
|
15 |
Parahovnik A. High pressure saturated flow boiling of CO2 at the micro scale[J]. International Journal of Heat and Mass Transfer, 2022, 186: 122449.
|
16 |
Wu X M. New experimental data of CO2 flow boiling in mini tube with micro fins of zero helix angle[J]. International Journal of Refrigeration, 2015, 59: 281-294.
|
17 |
罗炜, 贺静, 罗兵, 等. 截面形状对微通道流动沸腾影响的数值研究[J]. 西安交通大学学报, 2019(11): 101-111.
|
|
Luo W, He J, Luo B, et al. Numerical study on the effect of cross-sectional shape of microchannels on flow boiling[J]. Journal of Xi'an Jiaotong University, 2019(11): 101-111.
|
18 |
战洪仁, 李春晓, 王立鹏, 等. 基于VOF模型对重力热管内部沸腾冷凝过程的仿真模拟[J]. 冶金能源, 2016(1): 30-34, 43.
|
|
Zhan H R, Li C X, Wang L P, et al. Simulation of the thermosyphon's ebullition and condensation based on VOF model[J]. Energy for Metallurgical Industry, 2016(1): 30-34, 43.
|
19 |
魏敬华, 潘良明, 袁德文, 等. 过冷流动沸腾相变过程汽泡特性的VOF方法模拟[J]. 核动力工程, 2012(6): 65-71.
|
|
Wei J H, Pan L M, Yuan D W, et al. VOF simulation of bubble characteristics of subcooled flow boiling[J]. Nuclear Power Engineering, 2012(6): 65-71.
|
20 |
Mastrullo R. Carbon dioxide local heat transfer coefficients during flow boiling in a horizontal circular smooth tube[J]. International Journal of Heat and Mass Transfer, 2009, 52(19/20): 4184-4194.
|
21 |
Zhang W, Hibiki T, Mishima K. Correlation for flow boiling heat transfer at low liquid Reynolds number in small diameter channels[J]. Journal of Heat Transfer, 2005, 127: 1214-1221.
|
22 |
Chen J C. Correlation for boiling heat transfer to saturated fluids in convective flow[J]. Industrial and Engineering Chemistry Process Design and Development, 1966, 5(3): 322-329.
|
23 |
Choi K I. Two-phase flow heat transfer of CO2 vaporization in smooth horizontal minichannels[J]. International Journal of Refrigeration, 2007, 30(5): 767-777.
|
24 |
Dittus F W. Heat transfer in automobile radiators of the tubular type[J]. International Communications in Heat and Mass Transfer, 1985, 12(1): 3-22.
|
25 |
Cooper M G. Heat flow rates in saturated nucleate pool boiling-a wide-ranging examination using reduced properties[J]. Advances in Heat Transfer, 1984, 16: 157-239.
|
26 |
Bansal P. A review—Status of CO2 as a low temperature refrigerant: fundamentals and R&D opportunities[J]. Applied Thermal Engineering, 2012, 41: 18-29.
|
27 |
Dang C B. Effect of lubricating oil on flow boiling heat transfer of carbon dioxide[J]. International Journal of Refrigeration, 2013, 36(1): 136-144.
|
28 |
Schlager L M, Pate M B, Bergles A E. Performance predictions of refrigerant-oil mixtures in smooth and internally finned tubes(Part Ⅱ): Design equations[J]. ASHRAE Transactions, 1990, 96(1): 170-182.
|
29 |
Eckels S, Doerr T, Pate M. A comparison of the heat transfer and pressure drop performance of R-134a-lubricant mixtures in different diameter smooth tubes and micro-fin tubes[J]. ASHRAE Transactions, 1998, 104(1a): 376-386.
|
30 |
Kim S, Pehlivanoglu N, Hrnjak P S. R744 flow boiling heat transfer with and without oil at low temperatures in 11.2 mm horizontal smooth tube[C]//International Refrigeration and Air Conditioning Conference. 2010.
|