化工学报 ›› 2019, Vol. 70 ›› Issue (4): 1331-1339.DOI: 10.11949/j.issn.0438-1157.20181053
柴叶霞1,2(),陈华艳1,3(),贾悦1,3,李丹丹1,2,武春瑞1,3,吕晓龙1,3
收稿日期:
2018-09-19
修回日期:
2018-11-01
出版日期:
2019-04-05
发布日期:
2019-04-05
通讯作者:
陈华艳
作者简介:
<named-content content-type="corresp-name">柴叶霞</named-content>(1992—),女,硕士研究生,<email>821246765@qq.com</email>|陈华艳(1978—),女,副研究员,<email>chenhuayan@tjpu.edu.cn</email>
基金资助:
Yexia CHAI1,2(),Huayan CHEN1,3(),Yue JIA1,3,Dandan LI1,2,Chunrui WU1,3,Xiaolong LYU1,3
Received:
2018-09-19
Revised:
2018-11-01
Online:
2019-04-05
Published:
2019-04-05
Contact:
Huayan CHEN
摘要:
为了提高塑料换热管的传热性能,通过两步涂覆法制备了具有超疏水表面的复合塑料换热管。首先采用多孔PVDF中空纤维膜为支撑层,以导热材料纳米ZnO填充聚二甲基硅氧烷(PDMS)为皮层,制备了具有致密外表皮层的复合塑料换热管。其次为了强化蒸气的滴状冷凝传热,通过考察正硅酸乙酯含量,氨水含量等条件的影响,制备出了具有超疏水表面的PVDF复合塑料换热管。结果表明,所制备的换热管表面接触角可达154°,与熔融法及NIPS法制备的换热管相比,总传热系数可提高85.3%~147.3%。
中图分类号:
柴叶霞, 陈华艳, 贾悦, 李丹丹, 武春瑞, 吕晓龙. PVDF中空纤维换热管超疏水表面强化蒸气滴状冷凝传热[J]. 化工学报, 2019, 70(4): 1331-1339.
Yexia CHAI, Huayan CHEN, Yue JIA, Dandan LI, Chunrui WU, Xiaolong LYU. Enhancement on steam dropwise condensation heat transfer with superhydrophobic surfaces of PVDF hollow fiber heat exchange tubes[J]. CIESC Journal, 2019, 70(4): 1331-1339.
PVDF ultrafiltration membrane | PVDF membrane module | |||||
---|---|---|---|---|---|---|
Bore size/μm | Wall thickness/μm | Module inner diameter /mm | Membrane filament length /mm | Loading density/% | Heat exchange tube number/root | Effective membrane area/m2 |
800 | 200 | 31 | 230 | 10.0 | 67 | 4.84×10-2 |
表1 PVDF超滤膜与组件参数
Table 1 PVDF ultrafiltration membrane and membrane module parameters
PVDF ultrafiltration membrane | PVDF membrane module | |||||
---|---|---|---|---|---|---|
Bore size/μm | Wall thickness/μm | Module inner diameter /mm | Membrane filament length /mm | Loading density/% | Heat exchange tube number/root | Effective membrane area/m2 |
800 | 200 | 31 | 230 | 10.0 | 67 | 4.84×10-2 |
Item | PVDF original membrane | Heat exchange tube M1 | Heat exchange tube M2 |
---|---|---|---|
pure water flux/(kg·m-2·h-1) | 76.49 | 0 | 0 |
percentage of pressure drop /% | 0 | 0 | 0 |
表2 PVDF原膜与换热管的致密性比较
Table 2 Comparison of compactness between PVDF original membrane and heat exchange tubes
Item | PVDF original membrane | Heat exchange tube M1 | Heat exchange tube M2 |
---|---|---|---|
pure water flux/(kg·m-2·h-1) | 76.49 | 0 | 0 |
percentage of pressure drop /% | 0 | 0 | 0 |
图2 PVDF原膜及PVDF换热管的断面形貌及特征X射线能谱线扫图
Fig.2 Cross-sectional morphology and characteristic X-ray energy spectrum line sweep of PVDF original film and PVDF heat exchange tube
Item | PVDF original membrane | Heat exchange tube M1 | Heat exchange tube M2 |
---|---|---|---|
breaking strength/cN | 218 | 223.4 | 257 |
porosity/% | 60.26 | 55.16 | 52.73 |
表3 PVDF原膜与换热管的力学性能及孔隙率比较
Table 3 Comparison of mechanical properties and porosity of PVDF original membrane and heat exchange tubes
Item | PVDF original membrane | Heat exchange tube M1 | Heat exchange tube M2 |
---|---|---|---|
breaking strength/cN | 218 | 223.4 | 257 |
porosity/% | 60.26 | 55.16 | 52.73 |
Ultrasonic time/h | Gel layer |
---|---|
1 | not falling off |
2 | not falling off |
3 | not falling off |
4 | not falling off |
5 | not falling off |
6 | not falling off |
表4 PVDF换热管皮层的稳定性
Table 4 Stability of PVDF heat exchange tube skin layer
Ultrasonic time/h | Gel layer |
---|---|
1 | not falling off |
2 | not falling off |
3 | not falling off |
4 | not falling off |
5 | not falling off |
6 | not falling off |
1 | 吕明璐, 杨鑫, 张瑶 . 换热器的现状分析及分类应用[J]. 当代化工, 2018, 47(3): 582-584. |
Lyu M L , Yang X , Zhang Y . Current situation analysis and classified application of heat exchangers[J]. Contemporary Chemical Industry, 2018, 47(3): 582-584. | |
2 | Hong X , Liao Z , Sun J , et al . New insights into T-H/H-F diagrams for synthesis of heat exchanger networks inside heat integrated water allocation networks[J]. Industrial & Engineering Chemistry Research, 2018, 57(28): 9323-9328. |
3 | 陈林, 孙颖颖, 杜小泽, 等 . 回收烟气余热的特种耐腐蚀塑料换热器的性能分析[J]. 中国电机工程学报, 2014, 34(17): 2778-2783. |
Chen L , SunY Y , Du X Z , et al . Performance analysis of special corrosion-resistant plastic heat exchanger for flue gas waste heat recovery[J]. Chinese Journal of Electrical Engineering, 2014, 34(17): 2778-2783. | |
4 | Chen X , Su Y , Aydin D , et al . Experimental investigations of polymer hollow fibre integrated evaporative cooling system with the fibre bundles in a spindle shape[J]. Energy & Buildings, 2017, 154: 166-174. |
5 | Zaheed L , Jachuck R J J . Review of polymer compact heat exchangers, with special emphasis on a polymer film unit[J]. Applied Thermal Engineering, 2004, 24(16): 2323-2358. |
6 | Qin Y , Li B , Wang S . Experimental investigation of a novel polymeric heat exchanger using modified polypropylene hollow fibers[J]. Industrial & Engineering Chemistry Research, 2012, 51(2): 882-890. |
7 | 王攀 . 基于全塑蒸发器的低温多效海水淡化系统研究[D]. 天津: 天津工业大学, 2014. |
Wang P . Research on low temperature multi-effect seawater desalination system based on all-plastic evaporator[D]. Tianjin: Tianjin Polytechnic University, 2014. | |
8 | 于杰 . 湿法纺丝制备PVDF换热毛细管及其性能研究[D]. 天津: 天津工业大学, 2016. |
Yu J . Preparation of PVDF heat exchange capillary by wet spinning and its properties[D]. Tianjin: Tianjin University of Technology, 2016. | |
9 | Phadnis A , Rykaczewski K . The effect of Marangoni convection on heat transfer during dropwise condensation on hydrophobic and omniphobic surfaces[J]. International Journal of Heat & Mass Transfer, 2017, 115: 148-158. |
10 | Xie X , Weng Q , Luo Z , et al . Thermal performance of the flat micro-heat pipe with the wettability gradient surface by laser fabrication[J]. International Journal of Heat & Mass Transfer, 2018, 125: 658-669. |
11 | Hoenig S , Bonner R . Dropwise condensation on superhydrophobic microporous wick structures[J]. Journal of Heat Transfer, 2018, 140(7): 7. |
12 | Li S , Cai W , Chen J , et al . Numerical study on condensation heat transfer and pressure drop characteristics of ethane/propane mixture upward flow in a spiral pipe[J]. International Journal of Heat & Mass Transfer, 2018, 121: 170-186. |
13 | Starostin A , Valtsifer V , Barkay Z , et al . Drop-wise and film-wise water condensation processes occurring on metallic micro-scaled surfaces[J]. Applied Surface Science, 2018, 444: 604-609. |
14 | 周兴东, 马学虎, 兰忠, 等 . 滴状冷凝强化含不凝气的蒸气冷凝传热机制[J]. 化工学报, 2007, 58(7): 1619-1625. |
Zhou X D , Ma X H , Lan Z , et al . Condensation heat transfer mechanism of steam containing non-condensable gas by droplet condensation[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(7): 1619-1625. | |
15 | 马学虎, 陈嘉宾, 徐敦颀, 等 . 聚合物表面性能对强化冷凝传热的影响[J]. 化工学报, 2002, 53(12): 1221-1226. |
Ma X H , Chen J B , Xu D Q , et al . Effect of polymer surface properties on enhanced condensation heat transfer[J]. Journal of Chemical Industry and Engineering(China), 2002, 53(12): 1221-1226. | |
16 | 阮艺平, 张莉, 徐宏 . 铜表面物理化学有序度对蒸汽冷凝特性的影响[J]. 化工学报, 2012, 63(1): 90-95. |
Ruan Y P , Zhang L , Xu H . Effect of physical and chemical order of copper surface on vapor condensation characteristics[J]. CIESC Journal, 2012, 63(1): 90-95. | |
17 | 何平, 王立业, 王浩然 . 复合沉积(PTFE)表面强化冷凝传热的实验研究[J]. 化工学报, 2000, 51(S1): 330-334. |
He P , Wang L Y , Wang H R . Experimental study on surface condensation enhanced heat transfer of composite deposition (PTFE)[J]. Journal of Chemical Industry and Engineering(China), 2000, 51(S1): 330-334. | |
18 | Guo Q , Li M X , Gu H X . Condensation heat transfer characteristics of low-GWP refrigerants in a smooth horizontal mini tube[J]. International Journal of Heat & Mass Transfer, 2018, 126: 26-38. |
19 | Wang X W , Ho J Y , Leong K C , et al . Condensation heat transfer and pressure drop characteristics of R-134a in horizontal smooth tubes and enhanced tubes fabricated by selective laser melting[J]. International Journal of Heat & Mass Transfer, 2018, 126: 949-962. |
20 | 王洪军, 吕保献, 翟高岭, 等 . 硅橡胶膜强化传热管的制备及其滴状冷凝传热研究[J]. 化工机械, 2010, 37(2): 135-137. |
Wang H J , Lyu B X , Zhai G L , et al . Preparation and dropwise condensation heat transfer of silicon rubber membrane heat transfer tubes[J]. Chemical Machinery, 2010, 37(2): 135-137. | |
21 | Sharma C S , Stamatopoulos C , Suter R , et al . Rationally 3D-textured copper surfaces for Laplace pressure imbalance induced enhancement in dropwise condensation[J]. ACS Applied Materials & Interfaces, 2018, 10(34): 29127-29135. |
22 | Zhang P , Maeda Y , Lv F , et al . Enhanced coalescence-induced droplet-jumping on nanostructured superhydrophobic surfaces in the absence of microstructures[J]. ACS Applied Materials & Interfaces, 2017, 9(40): 35391-35403. |
23 | Chen X , Weibel J A , Garimella S V . Characterization of coalescence-induced droplet jumping height on hierarchical superhydrophobic surfaces[J]. ACS Omega, 2017, 2(6): 2883-2890. |
24 | Wen R , Zhong L , Peng B , et al . Wetting transition of condensed droplets on nanostructured superhydrophobic surfaces: coordination of surface properties and condensing conditions[J]. ACS Applied Materials & Interfaces, 2017, 9(15): 13770-13777. |
25 | Zhu J , Luo Y , Tian J , et al . Clustered ribbed-nanoneedle structured copper surfaces with high-efficiency dropwise condensation heat transfer performance[J]. ACS Applied Materials & Interfaces, 2015, 7(20): 10660-10665. |
26 | Zhao Y , Luo Y , Zhu J , et al . Copper-based ultrathin nickel nanocone films with high-efficiency dropwise condensation heat transfer performance[J]. ACS Applied Materials & Interfaces, 2015, 7(22): 11719-11723. |
27 | Ölçeroğlu E , McCarthy M . Self-organization of microscale condensate for delayed flooding of nanostructured superhydrophobic surfaces[J]. ACS Applied Materials & Interfaces, 2016, 8(8): 5729-5736. |
28 | 贾巍, 高启君, 吕晓龙, 等 . PVDF中空纤维换热管亲/疏水组合表面强化蒸汽冷凝传热[J]. 化工学报, 2018, 69(7): 2935-2943. |
Jia W , Gao Q J , Lyu X L , et al . Enhancement on steam condensation heat transfer with hydrophilic/hydrophobic combination surfaces of PVDF hollow fiber heat exchange tubes[J]. CIESC Journal, 2018, 69(7): 2935-2943. | |
29 | 张燕, 陈华艳, 高启君, 等 . 基于PVDF疏水膜的界面聚合改性制备换热管[J]. 膜科学与技术, 2017, 37(3): 14-20. |
Zhang Y , Chen H Y , Gao Q J , et al . Preparation of heat exchanger tube by interfacial polymerization modification based on PVDF hydrophobic membrane[J]. Membrane Science and Technology, 2017, 37(3): 14-20. | |
30 | 倪非非, 舒桂明, 李可 . 用于胆红素吸附的β-环糊精改性PVDF血浆分离膜的制备[J]. 膜科学与技术, 2018, 38(3): 16-24. |
Ni F F , Shu G M , Li K . Preparation of PVDF plasma separation adsorption membrane by modified β-cyclodextrin for bilirubin removal[J]. Membrane Science and Technology, 2018, 38(3): 16-24. | |
31 | 刘治宇 . 套管式气隙膜蒸馏组件设计与实验研究[D]. 天津: 天津工业大学, 2018. |
Liu Z Y . Design and experimental study of casing air gap membrane distillation module[D]. Tianjin: Tianjin Polytechnic University, 2018. | |
32 | 李丹丹 . PVDF全塑蒸发器的制备及其性能研究[D]. 天津: 天津工业大学, 2018. |
Li D D . Preparation and performance of PVDF full plastic evaporator[D]. Tianjin: Tianjin Polytechnic University, 2018. | |
33 | 于杰, 陈华艳, 高启君, 等 . 基于毛细润湿机理的PVDF中空纤维换热毛细管制备及其性能研究[J]. 功能材料, 2016, 47(10): 10091-10095. |
Yu J , Chen H Y , Gao Q J , et al . The preparation and performance of PVDF hollow fiber heat capillary based on capillary wetting mechanism[J]. Journal of Functional Materials, 2016, 47(10): 10091-10095. | |
34 | 张力, 王健农, 许前锋 . 溶胶-凝胶法制备透明超疏水性SiO2涂层[J]. 材料导报, 2008, 22(s3): 112-114. |
Zhang L , Wang J N , Xu Q F . Preparation of transparent super-hydrophobic SiO2 coating by sol-gel method[J]. Material Guide, 2008, 22(s3): 112-114. | |
35 | Edalatpour M , Liu L , Jacobi A M , et al . Managing water on heat transfer surfaces: a critical review of techniques to modify surface wettability for applications with condensation or evaporation[J]. Applied Energy, 2018, 222(C): 967-992. |
36 | 邹锐 . 改性SiO2复合溶胶的制备及棉织物超疏水表面的构筑研究[D]. 上海: 上海工程技术大学, 2014. |
Zou R . Preparation of modified SiO2 composite sol and construction of superhydrophobic surface of cotton fabric[D]. Shanghai: Shanghai University of Engineering and Technology, 2014. |
[1] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[2] | 史昊鹏, 钟达文, 廉学新, 张君峰. 朝下多尺度沟槽翅片结构表面沸腾换热实验研究[J]. 化工学报, 2023, 74(7): 2880-2888. |
[3] | 谷雨, 龚路远, 郭亚丽, 沈胜强. 低质量流率蒸汽真空水平管内凝结传热特性的实验研究[J]. 化工学报, 2022, 73(2): 595-603. |
[4] | 陆至彬, 李依梦, 何畅, 张冰剑, 陈清林, 潘明. 集成分区耦合策略的物理信息神经网络模拟共轭传热过程研究[J]. 化工学报, 2022, 73(12): 5483-5493. |
[5] | 李英杰, 李奇侠, 王宏, 朱恂, 陈蓉, 廖强, 丁玉栋. 波浪结构超疏水表面对液滴聚并弹跳的影响[J]. 化工学报, 2022, 73(10): 4345-4354. |
[6] | 郭达, 祁贵生, 刘有智, 焦纬洲, 闫文超, 高雨松. 错流旋转填料床的质、热同传性能及传热机理研究[J]. 化工学报, 2021, 72(11): 5543-5551. |
[7] | 奥德, 张皓冰, 吕美婵, 王海涛, 常娜. MOF-199@GO改性PVDF荷电纳滤膜的制备及其性能[J]. 化工学报, 2020, 71(S2): 297-305. |
[8] | 汪义泽, 王德武, 侯得印, 安广宇, 唐敏, 王军. 亲疏水性CuBTC/PVDF复合膜应用于膜蒸馏抗油实验[J]. 化工学报, 2020, 71(6): 2811-2820. |
[9] | 郭华超, 杨波, 黄国家, 徐青永, 李爽, 伍振凌. 聚偏氟乙烯/石墨烯复合材料的制备及性能研究[J]. 化工学报, 2020, 71(4): 1881-1888. |
[10] | 薛爱莲, 周守勇, 蔡健健, 李梅生, 张艳, 赵宜江. 温敏性PVDF/PGS-g-PNIPAM纳米复合超滤膜的制备和性能[J]. 化工学报, 2020, 71(3): 1380-1389. |
[11] | 朱振亚, 白成玲, 王磊, 孟晓荣. 紧实型GO/PVDF复合膜对有机染料的去除性能研究[J]. 化工学报, 2019, 70(6): 2361-2369. |
[12] | 闫鑫, 徐进良. 超疏水表面太阳能加热金-水纳米流体液滴蒸发特性[J]. 化工学报, 2019, 70(3): 892-900. |
[13] | 刘忠彦, 孙大汉, 金旭, 王天皓, 马一太. CO2管内流动沸腾换热模型评价研究[J]. 化工学报, 2019, 70(1): 56-64. |
[14] | 王凯, 王德武, 侯得印, 袁子怡, 王军. 自组装法制备PVDF-SiO2/PVSQ超疏水复合膜及膜蒸馏抗污染性能[J]. 化工学报, 2019, 70(1): 298-308. |
[15] | 李晗, 蒲文灏, 杨宁, 毛衍钦, 岳晨, 张琦. 空气-石蜡直接接触换热特性实验研究[J]. 化工学报, 2018, 69(9): 3792-3798. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||