化工学报 ›› 2020, Vol. 71 ›› Issue (6): 2811-2820.DOI: 10.11949/0438-1157.20191439
汪义泽1,2(),王德武1(
),侯得印2,3(
),安广宇2,唐敏2,王军3
收稿日期:
2019-11-26
修回日期:
2020-03-23
出版日期:
2020-06-05
发布日期:
2020-06-05
通讯作者:
王德武,侯得印
作者简介:
汪义泽(1995—),男,硕士研究生,基金资助:
Yize WANG1,2(),Dewu WANG1(
),Deyin HOU2,3(
),Guangyu AN2,Min TANG2,Jun WANG3
Received:
2019-11-26
Revised:
2020-03-23
Online:
2020-06-05
Published:
2020-06-05
Contact:
Dewu WANG,Deyin HOU
摘要:
采用水热法合成亲水性的CuBTC金属有机骨架(MOFs)颗粒,采用聚乙烯醇(PVA)作为黏合剂,用抽滤的方法将CuBTC颗粒附载在聚偏氟乙烯(PVDF)膜上,之后用戊二醛(GA)对PVA进行交联,制备出表层亲水、底层疏水的CuBTC/PVDF复合膜。通过场发射电子显微镜、比表面积及孔径分析仪、接触角测量仪、孔径分析仪、X射线衍射仪等对CuBTC颗粒和不同CuBTC含量的复合膜的表面特征、结构形态和稳定性进行了表征。结果表明,CuBTC颗粒有着较大的比表面积和孔容,CuBTC颗粒可以牢固地抽滤在PVDF膜表面,热稳定性高且有较好的柔韧性。与抽滤前的PVDF膜相比,随着CuBTC颗粒的增多,膜厚度有所增加,孔径和孔隙率有所减小,但对其膜蒸馏膜通量的影响不大,且在CuBTC含量在0.6 g时表现出较好的性能。在以1 g/L原油和35 g/L氯化钠混合溶液为进料液对原膜和复合膜进行直接接触膜蒸馏抗油污实验,发现原膜很快被油污染堵塞毛孔,而复合膜具有良好的抗油污染能力,可以进行长期的膜蒸馏实验。
中图分类号:
汪义泽, 王德武, 侯得印, 安广宇, 唐敏, 王军. 亲疏水性CuBTC/PVDF复合膜应用于膜蒸馏抗油实验[J]. 化工学报, 2020, 71(6): 2811-2820.
Yize WANG, Dewu WANG, Deyin HOU, Guangyu AN, Min TANG, Jun WANG. Hydrophilic-hydrophobic CuBTC/PVDF composite membrane applied to membrane distillation anti-oil experiment[J]. CIESC Journal, 2020, 71(6): 2811-2820.
比表面积/(m2/g) | 孔容/(cm3/g) | 孔径/nm | ||
---|---|---|---|---|
BJH吸 附孔容 | BJH脱 附孔容 | BJH吸 附孔径 | BJH脱 附孔径 | |
1219.785 | 0.056 | 0.051 | 3.270 | 3.356 |
表1 CuBTC颗粒的比表面积、孔径及孔容
Table 1 BET, pore size and pore volume of CuBTC particles
比表面积/(m2/g) | 孔容/(cm3/g) | 孔径/nm | ||
---|---|---|---|---|
BJH吸 附孔容 | BJH脱 附孔容 | BJH吸 附孔径 | BJH脱 附孔径 | |
1219.785 | 0.056 | 0.051 | 3.270 | 3.356 |
膜 | CuBTC 含量/g | 膜厚度/mm | 平均孔径/μm | 孔隙率/% |
---|---|---|---|---|
PVDF | 0 | 0.121±0.02 | 0.860±0.02 | 63.055±0.82 |
PVDF-M1 | 0.2 | 0.144±0.03 | 0.839±0.02 | 59.796±0.69 |
PVDF-M2 | 0.4 | 0.167±0.03 | 0.814±0.02 | 56.129±1.14 |
PVDF-M3 | 0.6 | 0.184±0.03 | 0.789±0.03 | 52.413±0.54 |
PVDF-M4 | 0.8 | 0.223±0.05 | 0.702±0.03 | 44.741±0.43 |
表2 膜的厚度、平均孔径及孔隙率
Table 2 Thickness, average pore diameter and porosity of membranes
膜 | CuBTC 含量/g | 膜厚度/mm | 平均孔径/μm | 孔隙率/% |
---|---|---|---|---|
PVDF | 0 | 0.121±0.02 | 0.860±0.02 | 63.055±0.82 |
PVDF-M1 | 0.2 | 0.144±0.03 | 0.839±0.02 | 59.796±0.69 |
PVDF-M2 | 0.4 | 0.167±0.03 | 0.814±0.02 | 56.129±1.14 |
PVDF-M3 | 0.6 | 0.184±0.03 | 0.789±0.03 | 52.413±0.54 |
PVDF-M4 | 0.8 | 0.223±0.05 | 0.702±0.03 | 44.741±0.43 |
1 | Lawson K W, Lloyd D R. Membrane distillation[J]. Journal of Membrane Science, 1997, 124(1): 1-25. |
2 | Elbourawi M S, Ding Z, Ma R, et al. A framework for better understanding membrane distillation separation process[J]. Journal of Membrane Science, 2006, 285(1): 4-29. |
3 | 王许云, 张林, 陈欢林. 膜蒸馏技术最新研究现状及进展[J]. 化工进展, 2007, 26(2): 27-31+38. |
Wang X Y, Zhang L, Cheng H L. The latest research status and progress of membrane distillation technology [J]. Chemical Industry and Engineering Progress, 2007, 26(2): 27-31+38. | |
4 | Khayet M, Matsuura T. Preparation and aharacterization of polyvinylidene fluoride membranes for membrane distillation[J]. Industrial & Engineering Chemistry Research, 2010, 40(24): 5710-5718. |
5 | Pendashteh A R, Fakhru’l-Razi A, Chaibakhsh N, et al. Modeling of membrane bioreactor treating hypersaline oily wastewater by artificial neural network[J]. 2012, 192(2): 568-575. |
6 | Zhang S, Wang P, Fu X, et al. Sustainable water recovery from oily wastewater via forward osmosis-membrane distillation (FO-MD)[J]. Water Research, 2014, 52:112-121. |
7 | 朱志高. 超选择润湿性膜界面的构筑及含油高盐废水处理研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
Zhu Z G. Construction of selective superwetting membrane interface for treatment of oily high salinity wastewater[D]. Harbin: Harbin Institute of Technology, 2019. | |
8 | James S L. Metal-organic frameworks[J]. Chemical Society Reviews, 2003, 32(5): 276-288. |
9 | Allendorf M D, Stavila V. Crystal engineering, structure–function relationships, and the future of metal-organic frameworks[J]. CrystEngComm, 2015, 17(2): 229-246. |
10 | Li J R, Julian S, Zhou H C. Metal-organic frameworks for separations[J]. Chemical Reviews, 2012, 112(2): 869-932. |
11 | Kumar R S, Kumar S S, Kulandainathan M A. Efficient electrosynthesis of highly active Cu3(BTC)2-MOF and its catalytic application to chemical reduction[J]. Microporous & Mesoporous Materials, 2013, 168(Complete): 57-64. |
12 | Cho H Y, Yang D A, Kim J, et al. CO2 adsorption and catalytic application of Co-MOF-74 synthesized by microwave heating[J]. Catalysis Today, 2012, 185(1): 35-40. |
13 | Liu B, Shekhah O, Arslan H K, et al. Enantiopure metal-organic framework thin films: oriented SURMOF growth and enantioselective adsorption[J]. Angewandte Chemie, 2012, 51(3): 559-559. |
14 | Wang L, Li Y A, Yang F, et al. Cd(II)-MOF: adsorption, separation, and guest-dependent luminescence for monohalobenzenes[J]. Inorganic Chemistry, 2014, 53(17): 9087-9094. |
15 | Chen B L, Xiang S C, Qian G D. Metal-organic frameworks with functional pores for recognition of small molecules[J]. Accounts of Chemical Research, 2010, 43(8): 1115-1124. |
16 | Hao Z, Song X, Zhu M, et al. One-dimensional channel-structured Eu-MOF for sensing small organic molecules and Cu2+ ion[J]. Journal of Materials Chemistry A, 2013, 1(36): 11043-11050. |
17 | Li B, Wen H-M, Wang H, et al. A porous metal–organic framework with dynamic pyrimidine groups exhibiting record high methane storage working capacity[J]. Journal of the American Chemical Society, 2014, 136(17): 6207-6210. |
18 | Marco-Lozar J P, Juan-Juan J, Suárez-García F, et al. MOF-5 and activated carbons as adsorbents for gas storage[J]. International Journal of Hydrogen Energy, 2012, 37(3): 2370-2381. |
19 | Li J R, Sculley J, Zhou H C. Metal-organic frameworks for separations[J]. Chemical Reviews, 2012, 112(2): 869-932. |
20 | Fairen J D, Moggach S A, Wharmby M T, et al. Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations[J]. Journal of the American Chemical Society, 2011, 133(23): 8900-8902. |
21 | Li W, Thirumurugan A, Barton P T, et al. Mechanical tunability via hydrogen bonding in metal-organic frameworks with the perovskite architecture[J]. Journal of the American Chemical Society, 2014, 136(22): 7801-7804. |
22 | Wei L, Henke S, Cheetham A K. Research update: mechanical properties of metal-organic frameworks-influence of structure and chemical bonding[J]. Apl. Materials, 2014, 2(12): 123902. |
23 | Gao M L, Zhao S Y, Chen Z Y, et al. Superhydrophobic/superoleophilic MOF composites for oil-water separation[J]. Inorganic Chemistry, 2019, 58(4): 2261-2264. |
24 | Zhang M, Guo B, Feng Y, et al. Amphipathic pentiptycene-based water-resistant Cu-MOF for efficient oil/water separation[J]. Inorganic Chemistry, 2019, 58(9): 5384-5387. |
25 | 林帝出. 面向膜蒸馏过程的亲/疏水复合膜电纺制备及其应用[D]. 烟台: 烟台大学, 2019. |
Lin D C. Preparation and application of electrospinning of hydrophobic/hydrophobic composite membrane for membrane distillation[D]. Yantai: Yantai University, 2019. | |
26 | 路雪梅. 超疏水和超亲水膜的制备及其在膜蒸馏中的污染与亲水化研究[D]. 北京: 北京工业大学, 2016. |
Lu X M. Preparation of superhydrophobic and superhydrophilic membrane and study on its pollution and hydrophilization in membrane distillation[D]. Beijing: Beijing University of Technology, 2016. | |
27 | Wang Z, Hou D, Lin S. Composite membrane with underwater-oleophobic surface for anti-oil-fouling membrane distillation[J]. Environmental Science & Technology, 2016, 50(7): 3866-3874. |
28 | Chui S S Y, Lo S M F, Charmant J P H, et al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n[J]. Science, 1999, 283(5405): 1148-1150. |
29 | Shuang L, Song Z, Che G, et al. Adsorption behavior of metal–organic frameworks for methylene blue from aqueous solution[J]. Microporous & Mesoporous Materials, 2014, 193(2): 27-34. |
30 | 陈金妹, 谈萍, 王建永, 等. 气体吸附法表征多孔材料的比表面积及孔结构[J]. 粉末冶金工业, 2011, 21(2): 45-49. |
Chen J M, Tan P, Wang J Y, et al. Characterization of specific surface area and pore structure of porous materials by gas adsorption[J]. Powder Metallurgy Industry, 2011, 21(2): 45-49. | |
31 | Makal T A. Recent advances in the study of mesoporous metal-organic frameworks[J]. Comments on Inorganic Chemistry, 2010, 31(5/6): 165-195. |
32 | Guo R, Fang X, Wu H, et al. Preparation and pervaporation performance of surface crosslinked PVA/PES composite membrane[J]. Journal of Membrane Science, 2019, 322(1): 32-38. |
33 | Basiuk E V, Anis A, Bandyopadhyay S, et al. Poly(vinyl alcohol)/CNT composites: an effect of cross-linking with glutaraldehyde[J]. Superlattices and Microstructures, 2019, 46(1/2): 379-383. |
34 | Lei L, Wei H, Zhang L, et al. Ionothermal synthesis of the metal-organic framework compound Cu3(BTC)2[J]. Studies in Surface Science & Catalysis, 2008, 174(08): 459-462. |
35 | Kim J, Cho H Y, Ahn W S. Synthesis and adsorption/catalytic properties of the metal organic framework CuBTC[J]. Catalysis Surveys from Asia, 2012, 16(2): 106-119. |
36 | Zhi L, Liu H, Xu Y, et al. Pyrolysis of metal–organic framework (CuBTC) decorated filter paper as a low-cost and highly active catalyst for the reduction of 4-nitrophenol[J]. Dalton Transactions, 2018, 47(43): 15458-15464. |
37 | Hartmann M, Himsl D, Kunz S, et al. Olefin/paraffin separation over the metal organic framework material Cu3(BTC)2[J]. 2008, 174(1): 615-618. |
38 | Pang J B, Qiu K Y, Wei Y. A new nonsurfactant pathway to mesoporous silica materials based on tartaric acid in conjunction with metallic chloride[J]. Chemistry of Materials, 2001, 13(7): 2361-2365. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[3] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[4] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[5] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[6] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[7] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[8] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[9] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[10] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
[11] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[12] | 陈朝光, 贾玉香, 汪锰. 以低浓度废酸驱动中和渗析脱盐的模拟与验证[J]. 化工学报, 2023, 74(6): 2486-2494. |
[13] | 顾浩, 张福建, 刘珍, 周文轩, 张鹏, 张忠强. 力电耦合作用下多孔石墨烯膜时间维度的脱盐性能及机理研究[J]. 化工学报, 2023, 74(5): 2067-2074. |
[14] | 袁子涵, 王淑彦, 邵宝力, 谢磊, 陈曦, 马一玫. 基于幂律液固曳力模型流化床内湿颗粒流动特性的研究[J]. 化工学报, 2023, 74(5): 2000-2012. |
[15] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 532
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 727
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||