1 |
Lawson K W, Lloyd D R. Membrane distillation[J]. Journal of Membrane Science, 1997, 124(1): 1-25.
|
2 |
Elbourawi M S, Ding Z, Ma R, et al. A framework for better understanding membrane distillation separation process[J]. Journal of Membrane Science, 2006, 285(1): 4-29.
|
3 |
王许云, 张林, 陈欢林. 膜蒸馏技术最新研究现状及进展[J]. 化工进展, 2007, 26(2): 27-31+38.
|
|
Wang X Y, Zhang L, Cheng H L. The latest research status and progress of membrane distillation technology [J]. Chemical Industry and Engineering Progress, 2007, 26(2): 27-31+38.
|
4 |
Khayet M, Matsuura T. Preparation and aharacterization of polyvinylidene fluoride membranes for membrane distillation[J]. Industrial & Engineering Chemistry Research, 2010, 40(24): 5710-5718.
|
5 |
Pendashteh A R, Fakhru’l-Razi A, Chaibakhsh N, et al. Modeling of membrane bioreactor treating hypersaline oily wastewater by artificial neural network[J]. 2012, 192(2): 568-575.
|
6 |
Zhang S, Wang P, Fu X, et al. Sustainable water recovery from oily wastewater via forward osmosis-membrane distillation (FO-MD)[J]. Water Research, 2014, 52:112-121.
|
7 |
朱志高. 超选择润湿性膜界面的构筑及含油高盐废水处理研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
|
|
Zhu Z G. Construction of selective superwetting membrane interface for treatment of oily high salinity wastewater[D]. Harbin: Harbin Institute of Technology, 2019.
|
8 |
James S L. Metal-organic frameworks[J]. Chemical Society Reviews, 2003, 32(5): 276-288.
|
9 |
Allendorf M D, Stavila V. Crystal engineering, structure–function relationships, and the future of metal-organic frameworks[J]. CrystEngComm, 2015, 17(2): 229-246.
|
10 |
Li J R, Julian S, Zhou H C. Metal-organic frameworks for separations[J]. Chemical Reviews, 2012, 112(2): 869-932.
|
11 |
Kumar R S, Kumar S S, Kulandainathan M A. Efficient electrosynthesis of highly active Cu3(BTC)2-MOF and its catalytic application to chemical reduction[J]. Microporous & Mesoporous Materials, 2013, 168(Complete): 57-64.
|
12 |
Cho H Y, Yang D A, Kim J, et al. CO2 adsorption and catalytic application of Co-MOF-74 synthesized by microwave heating[J]. Catalysis Today, 2012, 185(1): 35-40.
|
13 |
Liu B, Shekhah O, Arslan H K, et al. Enantiopure metal-organic framework thin films: oriented SURMOF growth and enantioselective adsorption[J]. Angewandte Chemie, 2012, 51(3): 559-559.
|
14 |
Wang L, Li Y A, Yang F, et al. Cd(II)-MOF: adsorption, separation, and guest-dependent luminescence for monohalobenzenes[J]. Inorganic Chemistry, 2014, 53(17): 9087-9094.
|
15 |
Chen B L, Xiang S C, Qian G D. Metal-organic frameworks with functional pores for recognition of small molecules[J]. Accounts of Chemical Research, 2010, 43(8): 1115-1124.
|
16 |
Hao Z, Song X, Zhu M, et al. One-dimensional channel-structured Eu-MOF for sensing small organic molecules and Cu2+ ion[J]. Journal of Materials Chemistry A, 2013, 1(36): 11043-11050.
|
17 |
Li B, Wen H-M, Wang H, et al. A porous metal–organic framework with dynamic pyrimidine groups exhibiting record high methane storage working capacity[J]. Journal of the American Chemical Society, 2014, 136(17): 6207-6210.
|
18 |
Marco-Lozar J P, Juan-Juan J, Suárez-García F, et al. MOF-5 and activated carbons as adsorbents for gas storage[J]. International Journal of Hydrogen Energy, 2012, 37(3): 2370-2381.
|
19 |
Li J R, Sculley J, Zhou H C. Metal-organic frameworks for separations[J]. Chemical Reviews, 2012, 112(2): 869-932.
|
20 |
Fairen J D, Moggach S A, Wharmby M T, et al. Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations[J]. Journal of the American Chemical Society, 2011, 133(23): 8900-8902.
|
21 |
Li W, Thirumurugan A, Barton P T, et al. Mechanical tunability via hydrogen bonding in metal-organic frameworks with the perovskite architecture[J]. Journal of the American Chemical Society, 2014, 136(22): 7801-7804.
|
22 |
Wei L, Henke S, Cheetham A K. Research update: mechanical properties of metal-organic frameworks-influence of structure and chemical bonding[J]. Apl. Materials, 2014, 2(12): 123902.
|
23 |
Gao M L, Zhao S Y, Chen Z Y, et al. Superhydrophobic/superoleophilic MOF composites for oil-water separation[J]. Inorganic Chemistry, 2019, 58(4): 2261-2264.
|
24 |
Zhang M, Guo B, Feng Y, et al. Amphipathic pentiptycene-based water-resistant Cu-MOF for efficient oil/water separation[J]. Inorganic Chemistry, 2019, 58(9): 5384-5387.
|
25 |
林帝出. 面向膜蒸馏过程的亲/疏水复合膜电纺制备及其应用[D]. 烟台: 烟台大学, 2019.
|
|
Lin D C. Preparation and application of electrospinning of hydrophobic/hydrophobic composite membrane for membrane distillation[D]. Yantai: Yantai University, 2019.
|
26 |
路雪梅. 超疏水和超亲水膜的制备及其在膜蒸馏中的污染与亲水化研究[D]. 北京: 北京工业大学, 2016.
|
|
Lu X M. Preparation of superhydrophobic and superhydrophilic membrane and study on its pollution and hydrophilization in membrane distillation[D]. Beijing: Beijing University of Technology, 2016.
|
27 |
Wang Z, Hou D, Lin S. Composite membrane with underwater-oleophobic surface for anti-oil-fouling membrane distillation[J]. Environmental Science & Technology, 2016, 50(7): 3866-3874.
|
28 |
Chui S S Y, Lo S M F, Charmant J P H, et al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n[J]. Science, 1999, 283(5405): 1148-1150.
|
29 |
Shuang L, Song Z, Che G, et al. Adsorption behavior of metal–organic frameworks for methylene blue from aqueous solution[J]. Microporous & Mesoporous Materials, 2014, 193(2): 27-34.
|
30 |
陈金妹, 谈萍, 王建永, 等. 气体吸附法表征多孔材料的比表面积及孔结构[J]. 粉末冶金工业, 2011, 21(2): 45-49.
|
|
Chen J M, Tan P, Wang J Y, et al. Characterization of specific surface area and pore structure of porous materials by gas adsorption[J]. Powder Metallurgy Industry, 2011, 21(2): 45-49.
|
31 |
Makal T A. Recent advances in the study of mesoporous metal-organic frameworks[J]. Comments on Inorganic Chemistry, 2010, 31(5/6): 165-195.
|
32 |
Guo R, Fang X, Wu H, et al. Preparation and pervaporation performance of surface crosslinked PVA/PES composite membrane[J]. Journal of Membrane Science, 2019, 322(1): 32-38.
|
33 |
Basiuk E V, Anis A, Bandyopadhyay S, et al. Poly(vinyl alcohol)/CNT composites: an effect of cross-linking with glutaraldehyde[J]. Superlattices and Microstructures, 2019, 46(1/2): 379-383.
|
34 |
Lei L, Wei H, Zhang L, et al. Ionothermal synthesis of the metal-organic framework compound Cu3(BTC)2[J]. Studies in Surface Science & Catalysis, 2008, 174(08): 459-462.
|
35 |
Kim J, Cho H Y, Ahn W S. Synthesis and adsorption/catalytic properties of the metal organic framework CuBTC[J]. Catalysis Surveys from Asia, 2012, 16(2): 106-119.
|
36 |
Zhi L, Liu H, Xu Y, et al. Pyrolysis of metal–organic framework (CuBTC) decorated filter paper as a low-cost and highly active catalyst for the reduction of 4-nitrophenol[J]. Dalton Transactions, 2018, 47(43): 15458-15464.
|
37 |
Hartmann M, Himsl D, Kunz S, et al. Olefin/paraffin separation over the metal organic framework material Cu3(BTC)2[J]. 2008, 174(1): 615-618.
|
38 |
Pang J B, Qiu K Y, Wei Y. A new nonsurfactant pathway to mesoporous silica materials based on tartaric acid in conjunction with metallic chloride[J]. Chemistry of Materials, 2001, 13(7): 2361-2365.
|