化工学报 ›› 2020, Vol. 71 ›› Issue (3): 1380-1389.DOI: 10.11949/0438-1157.20190872
收稿日期:
2019-07-31
修回日期:
2019-10-11
出版日期:
2020-03-05
发布日期:
2020-03-05
通讯作者:
赵宜江
基金资助:
Ailian XUE,Shouyong ZHOU,Jianjian CAI,Meisheng LI,Yan ZHANG,Yijiang ZHAO()
Received:
2019-07-31
Revised:
2019-10-11
Online:
2020-03-05
Published:
2020-03-05
Contact:
Yijiang ZHAO
摘要:
通过化学接枝法将聚(N-异丙基丙烯酰胺)(PNIPAM)接枝聚合在凹凸棒石(PGS)纳米纤维表面,制备了系列接枝率的温敏性PGS-g-PNIPAM纳米颗粒,将其与聚偏氟乙烯(PVDF)共混制备温敏性纳米复合超滤膜,深入研究PNIPAM接枝率对膜结构和性能的影响。结果表明,凹凸棒石表面PNIPAM接枝率随溶液中NIPAM单体浓度增大而增加;PGS-g-PNIPAM使复合膜中PVDF晶核变小,数目增多,膜更为疏松多孔,PVDF/PGS-g-PNIPAM膜的平均孔径在20 nm左右,膜的平均孔径和最大孔径均随凹凸棒石表面PNIPAM 接枝率的增加而增大;PVDF/PGS-g-PNIPAM膜具有温敏性,温敏开关系数随PNIPAM接枝率的增加先增强后减弱,当接枝率为21.33%时膜温敏开关系数最大,达到1.51,膜渗透通量也最大,对牛血清白蛋白具有良好的截留和抗污染性能。
中图分类号:
薛爱莲, 周守勇, 蔡健健, 李梅生, 张艳, 赵宜江. 温敏性PVDF/PGS-g-PNIPAM纳米复合超滤膜的制备和性能[J]. 化工学报, 2020, 71(3): 1380-1389.
Ailian XUE, Shouyong ZHOU, Jianjian CAI, Meisheng LI, Yan ZHANG, Yijiang ZHAO. Preparation and properties of temperature-responsive PVDF/PGS-g-PNIPAM nanocomposite ultrafiltration membrane[J]. CIESC Journal, 2020, 71(3): 1380-1389.
图4 不同的凹凸棒石改性膜的纯水通量随温度变化曲线以及温敏开关系数
Fig.4 Pure water flux and thermo-responsive gating coefficient of membranes incorporated various palygorskite at different temperatures
膜 | 最大孔径/ nm | 平均孔径/nm |
---|---|---|
PVDF | 30.2 ± 3.7 | 23.0 ± 3.0 |
PVDF/PgP 0.3 | 34.1 ± 0.4 | 19.4 ± 1.4 |
PVDF/ PgP 0.6 | 34.5 ± 1.3 | 20.9 ± 1.9 |
PVDF/ PgP 1.0 | 36.9 ± 2.3 | 21.6 ± 2.0 |
表1 膜的孔径
Table 1 Pore size of membranes
膜 | 最大孔径/ nm | 平均孔径/nm |
---|---|---|
PVDF | 30.2 ± 3.7 | 23.0 ± 3.0 |
PVDF/PgP 0.3 | 34.1 ± 0.4 | 19.4 ± 1.4 |
PVDF/ PgP 0.6 | 34.5 ± 1.3 | 20.9 ± 1.9 |
PVDF/ PgP 1.0 | 36.9 ± 2.3 | 21.6 ± 2.0 |
膜 | 平均孔径/ nm | 纯水通量/(L/(m2·h)) |
---|---|---|
PVDF/PGS-g-PNIPAM | 21.6±2.0 | 227.0 |
PVDF/PGS[ | 39.0±3.0 | 238.3 |
PVDF/PGS-g-APTES[ | 101.97 | 401.16 |
表2 PVDF/PGS-g-PNIPAM纳米复合超滤膜与文献中相关结果性能比较
Table 2 Comparison of PVDF/PGS-g-PNIPAM membrane with related results in literature
膜 | 平均孔径/ nm | 纯水通量/(L/(m2·h)) |
---|---|---|
PVDF/PGS-g-PNIPAM | 21.6±2.0 | 227.0 |
PVDF/PGS[ | 39.0±3.0 | 238.3 |
PVDF/PGS-g-APTES[ | 101.97 | 401.16 |
1 | 杨皓程,陈一夫,叶辰,等.有机-无机复合多孔膜制备与应用[J].化学进展,2015,27(8):1014-1024. |
Yang H C,Chen Y F,Ye C,et al.Advances in porous organic-inorganic composite membranes[J].Progress in Chemistry,2015,27(8):1014-1024. | |
2 | 王熙大,王志宁,高从堦.纳米复合膜在膜分离领域的研究进展[J].应用化学,2014,31(2):123-132. |
Wang X D,Wang Z N,Gao C J.Research progress of nanocomposite membrane in the membrane separation [J].Chinese Journal of Applied Chemistry,2014,31(2):123-132. | |
3 | Li X,Sotto A,Li J,et al.Progress and perspectives for synthesis of sustainable antifouling composite membranes containingin situ generated nanoparticles[J].Journal of Membrane Science,2017,524:502-528. |
4 | Lai C Y,Groth A,Gray S,et al.Enhanced abrasion resistant PVDF/nanoclay hollow fibre composite membranes for water treatment[J].Journal of Membrane Science,2014,449:146-157. |
5 | 赵传起,杨悦锁,徐晓晨,等.纳米氧化石墨烯改性PVDF微滤膜在MBR中的抗污染性能[J].化工学报,2017,68(1):375-384. |
Zhao C Q,Yang Y S,Xu X C,et al.Antifouling performance of graphene oxide modified PVDF microfiltration membranes in membrane bioreactor[J].CIESC Journal,2017,68(1):375-384. | |
6 | 薛娟琴,王森,韩小龙,等.氧化石墨烯改性PVDF超滤膜制备及分离性能[J].化工学报,2017,68(9):3466-3473. |
Xue J Q,Wang S,Han X L,et al.Prepartion and separation performance of GO modified PVDF ultrafiltration membrane[J].CIESC Journal,2017,68(9):3466-3473. | |
7 | 冯雪婷,杨盛,文晨,等.Ag2CO3@PVDF/氧化石墨烯超滤膜及其分离性能[J].化工学报,2017,68(5):2169-2176. |
Feng X T,Yang S,Wen C,et al.Ag2CO3@PVDF/GO ultrafiltration membrane for water purification[J].CIESC Journal,2017,68(5):2169-2176. | |
8 | Wei Y,Chu H Q,Dong B Z,et al.Effect of TiO2 nanowire addition on PVDF ultrafiltration membrane performance[J].Desalination,2011,272(1/2/3):90-97. |
9 | Liu F,Abed M R M,Li K.Preparation and characterization of poly(vinylidene fluoride) (PVDF) based ultrafiltration membranes using nano γ-Al2O3[J].Journal of Membrane Science,2011,366(1/2):97-103. |
10 | Ng L Y,Mohammad A W,Leo C P,et al.Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review[J].Desalination,2013,308:15-33. |
11 | Zhang S,Wang R,Zhang S,et al.Development of phosphorylated silica nanotubes (PSNTs)/polyvinylidene fluoride (PVDF) composite membranes for wastewater treatment[J].Chemical Engineering Journal,2013,230(1) :260-271. |
12 | 史菁元,王文一,王金龙,等.聚砜/改性碳纳米管复合膜的制备及亲水性能[J].化工学报,2016,67(2):654-660. |
Shi J Y,Wang W Y,Wang J L,et al.Fabrication and hydrophilic properties of polysulfone/modified multiwalled carbon nanotube composite membranes[J].CIESC Journal,2016,67(2):654-660. | |
13 | Wang W,Wang A.Recent progress in dispersion of palygorskite crystal bundles for nanocomposites[J].Applied Clay Science,2016,119:18-30. |
14 | Zhou S Y,Xue A L,Zhang Y,et al.Novel polyamidoamine dendrimer-functionalized palygorskite adsorbents with high adsorption capacity for Pb2+ and reactive dyes[J].Applied Clay Science,2015,107:220-229. |
15 | Wu M,Ma T,Su Y,et al.Fabrication of composite nanofiltration membrane by incorporating attapulgite nanorods during interfacial polymerization for high water flux and antifouling property[J].Journal of Membrane Science,2017,544:79-87. |
16 | Li M S,Zhou S Y,Xue A L,et al.Fabrication of porous attapulgite hollow fiber membranes for liquid filtration[J].Materials Letters,2015,161:132-135. |
17 | Yang X M,Zhou S Y,Li M S,et al.Purification of cellulase fermentation brothvia low cost ceramic microfiltration membranes with nanofibers-like attapulgite separation layers[J].Separation & Purification Technology,2017,175:435-442. |
18 | Zhou S Y,Xue A L,Zhang Y,et al.Preparation of a new ceramic microfiltration membrane with a separation layer of attapulgite nanofibers[J].Materials Letters,2015,143:27-30. |
19 | Ji J,Zhou S Y,Lai C Y,et al.PVDF/palygorskite composite ultrafiltration membranes with enhanced abrasion resistance and flux[J].Journal of Membrane Science,2015,495:91-100. |
20 | Wei D Y,Zhou S Y,Li M S,et al.PVDF/palygorskite composite ultrafiltration membranes: effects of nano-clay particles on membrane structure and properties[J].Applied Clay Science,2019,181:105171. |
21 | Zhang Y,Zhao J,Chu H,et al.Effect of modified attapulgite addition on the performance of a PVDF ultrafiltration membrane[J].Desalination,2014,344:71-78. |
22 | Hsu C C,Wu C S,Liu Y L.Multiple stimuli-responsive poly(vinylidene fluoride) (PVDF) membrane exhibiting high efficiency of membrane clean in protein separation[J].Journal of Membrane Science,2014,450:257-264. |
23 | Zhou S Y,Xue A L,Zhang Y,et al.Fabrication of temperature-responsive ZrO2 tubular membranes, grafted with poly (N-isopropylacrylamide) brush chains, for protein removal and easy cleaning[J].Journal of Membrane Science,2014,450:351-361. |
24 | Chen X,Zhao B,Han P,et al.Temperature- and pH-sensitive membrane formed from blends of poly(vinylidene fluoride)-graft-poly(N-isopropylacrylamide) and poly(acrylic acid) microgels[J].Reactive and Functional Polymers,2014,84:10-20. |
25 | Xie R,Chu L Y,Chen W M,et al.Characterization of microstructure of poly(N-isopropylacrylamide)-grafted polycarbonate track-etched membranes prepared by plasma-graft pore-filling polymerization[J].Journal of Membrane Science,2005,258(1/2):157-166. |
26 | Krishnamoorthy M,Hakobyan S,Ramstedt M,et al.Surface-initiated polymer brushes in the biomedical field: applications in membrane science, biosensing, cell culture, regenerative medicine and antibacterial coatings[J].Chemical Reviews,2014,114(21):10976-11026. |
27 | Ju J,Wang C,Wang T,et al.Preparation and characterization of pH-sensitive and antifouling poly(vinylidene fluoride) microfiltration membranes blended with poly(methyl methacrylate-2-hydroxyethyl methacrylate-acrylic acid) [J].Journal of Colloid and Interface Science,2014,434(10):175-180. |
28 | Zhao Y J,Zhou S Y,Li M S,et al.Humic acid removal and easy-cleanability using temperature-responsive ZrO2 tubular membranes grafted with poly(N-isopropylacrylamide) brush chains[J].Water Research,2013,47(7):2375-2386. |
29 | Cai J J,Zhou S Y,Zhao Y J,et al.Enhanced hydrophilicity of a thermo-responsive PVDF/palygorskite-g-PNIPAAM hybrid ultrafiltration membranevia surface segregation induced by temperature[J].RSC Advances,2016,6(67):62186-62192. |
30 | 周守勇,张艳,薛爱莲,等.PAA-g-ZrO2复合膜过滤牛血清蛋白过程的污染阻力分析[J].化工学报,2014,65(3):954-959. |
Zhou S Y,Zhang Y,Xue A L,et al.Analysis of fouling resistance of PAA-g-ZrO2 composite membrane in filtrating BSA solution[J].CIESC Journal,2014,65(3) :954-959. | |
31 | Tsubokawa N,Ichioka H,Satoh T,et al.Grafting of ‘dendrimer-like’ highly branched polymer onto ultrafine silica surface[J].Reactive and Functional Polymers,1998,37(1/2/3):75-82. |
32 | Otero J A,Mazarrasa O,Villasante J,et al.Three independent ways to obtain information on pore size distributions of nanofiltration membranes[J].Journal of Membrane Science,2008,309(1/2):17-27. |
33 | Li Y,Chu L Y,Zhu J H,et al.Thermoresponsive gating characteristics of poly(N-isopropylacrylamide)-grafted porous poly(vinylidene fluoride) membranes[J].Industrial & Engineering Chemistry Research,2004,43(11):2643-2649. |
34 | Ying L,Kang E T,Neoh K G,et al.Drug permeation through temperature- sensitive membranes prepared from poly(vinylidene fluoride) with grafted poly(N-isopropylacrylamide) chains[J].Journal of Membrane Science,2004,243(1/2):253-262. |
35 | Liu W,Xie T,Qiu R,et al.N-Methylol acrylamide grafting bamboo fibers and their composites [J].Composites Science and Technology,2015,117(29):100-106. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[3] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[4] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[5] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[6] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[7] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[8] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[9] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[10] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[11] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
[12] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[13] | 陈朝光, 贾玉香, 汪锰. 以低浓度废酸驱动中和渗析脱盐的模拟与验证[J]. 化工学报, 2023, 74(6): 2486-2494. |
[14] | 刘道银, 陈柄岐, 张祖扬, 吴琰. 颗粒聚团结构对曳力特性影响的数值模拟[J]. 化工学报, 2023, 74(6): 2351-2362. |
[15] | 王蕾, 王磊, 白云龙, 何柳柳. SA膜状锂离子筛的制备及其锂吸附性能[J]. 化工学报, 2023, 74(5): 2046-2056. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||