化工学报 ›› 2019, Vol. 70 ›› Issue (4): 1494-1504.DOI: 10.11949/j.issn.0438-1157.20180629
收稿日期:
2018-06-04
修回日期:
2019-01-24
出版日期:
2019-04-05
发布日期:
2019-04-05
通讯作者:
王浩坤
作者简介:
<named-content content-type="corresp-name">江爱朋</named-content>(1976—),男,教授,<email>jiangaipeng@163.com</email>|王浩坤(1981—),男,博士,<email>hkwang@hdu.edu.cn</email>
基金资助:
Aipeng JIANG(),Quannan ZHANG,Haokun WANG(),Qiang DING,Weifeng XU,Jian WANG
Received:
2018-06-04
Revised:
2019-01-24
Online:
2019-04-05
Published:
2019-04-05
Contact:
Haokun WANG
摘要:
基于经济性目标的热泵供暖动态优化操作具有重要意义,但在操作区间内环境温度和模型参数变化的不确定性会对实际优化操控带来很大挑战。在完善热泵供暖系统模型的基础上,提出了一种改进的动态实时优化控制策略以改善系统的实际节能效果。该方法首先建立以压缩机和送水泵运行频率为控制变量的热泵供暖系统的非线性动态关系模型,并得到以24 h为周期、以综合性能指标最低为目标的动态实时优化命题。然后,在给定24 h环境温度预测情况下通过求解该优化命题得到热泵压缩机和送水泵的最优运行频率轨线,并以当前时间点的最优控制量对热泵供暖系统进行控制;接着,基于天气逐时预测和模型参数最新校验结果对环境温度轨线或者模型参数进行更新,不断地求解原优化命题以更新最优控制轨线,并不断地采用当前点的最优控制量对热泵供暖系统进行控制,直到当前时间点达到第24 h。实例计算结果表明:采用本文提出的方法可以进一步改善热泵供暖系统的动态优化操控效果,并能够很好地满足给定终端约束要求。本方法对于具有周期性和不确定参数的动态实时优化问题求解具有一定的借鉴意义。
中图分类号:
江爱朋, 张全南, 王浩坤, 丁强, 徐炜峰, 王剑. 一种改进的热泵供暖系统动态实时优化策略[J]. 化工学报, 2019, 70(4): 1494-1504.
Aipeng JIANG, Quannan ZHANG, Haokun WANG, Qiang DING, Weifeng XU, Jian WANG. An improved dynamic real time optimization strategy for heat pump heating system[J]. CIESC Journal, 2019, 70(4): 1494-1504.
Item | Value | Item | Value |
---|---|---|---|
Cw,s /(J/K) | 1.19×106 | | 19.16 |
Cw,r /(J/K) | 5.36×104 | Awz /m2 | 600 |
Cf /(J/K) | 4.56×105 | | 408 |
Cb /(J/K) | 2.26×106 | | 0.62 |
| 2.6 | Afz /m2 | 1500 |
| 25 | Ab /m2 | 2800 |
表1 动态方程中的参数值
Table 1 Parameter values of the model
Item | Value | Item | Value |
---|---|---|---|
Cw,s /(J/K) | 1.19×106 | | 19.16 |
Cw,r /(J/K) | 5.36×104 | Awz /m2 | 600 |
Cf /(J/K) | 4.56×105 | | 408 |
Cb /(J/K) | 2.26×106 | | 0.62 |
| 2.6 | Afz /m2 | 1500 |
| 25 | Ab /m2 | 2800 |
Case | Objective | Discomfort | Heat pump cost /CNY | Water pump cost/CNY | TT(0)= TT(24) |
---|---|---|---|---|---|
Case 1 | 122.67 | 1.926 | 219.128 | 24.28 | yes |
Case 2 | 141.85 | 1.929 | 255.060 | 26.71 | yes |
Case 3 | 110.18 | 8.113 | 187.972 | 24.28 | no |
表2 不同Case下的求解结果
Table 2 Solution results with different cases
Case | Objective | Discomfort | Heat pump cost /CNY | Water pump cost/CNY | TT(0)= TT(24) |
---|---|---|---|---|---|
Case 1 | 122.67 | 1.926 | 219.128 | 24.28 | yes |
Case 2 | 141.85 | 1.929 | 255.060 | 26.71 | yes |
Case 3 | 110.18 | 8.113 | 187.972 | 24.28 | no |
Case | Objective | Discomfort | Heat pump cost /CNY | Water pump cost/CNY | TT(0)=TT(24) |
---|---|---|---|---|---|
Case 2 | 141.85 | 1.929 | 255.060 | 26.707 | yes |
Case 4 | 155.97 | 2.351 | 281.604 | 27.988 | yes |
表3 不同COP值下的求解结果
Table 3 Solution results with different COP
Case | Objective | Discomfort | Heat pump cost /CNY | Water pump cost/CNY | TT(0)=TT(24) |
---|---|---|---|---|---|
Case 2 | 141.85 | 1.929 | 255.060 | 26.707 | yes |
Case 4 | 155.97 | 2.351 | 281.604 | 27.988 | yes |
Time point | Objective | Discomfort | Heat pump cost /CNY | Water pump cost/CNY | TT(0)=TT(24) |
---|---|---|---|---|---|
0 h | 141.85 | 1.929 | 255.060 | 26.707 | yes |
6 h | 139.40 | 2.331 | 250.074 | 26.412 | yes |
12 h | 134.81 | 2.462 | 241.19 | 25.974 | yes |
18 h | 129.91 | 2.344 | 231.783 | 25.692 | yes |
24 h | 125.99 | 2.430 | 223.923 | 25.641 | yes |
表4 不同时刻优化求解目标函数结果
Table 4 Solution results at different time points
Time point | Objective | Discomfort | Heat pump cost /CNY | Water pump cost/CNY | TT(0)=TT(24) |
---|---|---|---|---|---|
0 h | 141.85 | 1.929 | 255.060 | 26.707 | yes |
6 h | 139.40 | 2.331 | 250.074 | 26.412 | yes |
12 h | 134.81 | 2.462 | 241.19 | 25.974 | yes |
18 h | 129.91 | 2.344 | 231.783 | 25.692 | yes |
24 h | 125.99 | 2.430 | 223.923 | 25.641 | yes |
1 | Cheng H M , Chen C Y , Cheng C C , et al . An application of distributed air-conditioning control network[C]//Proceeding of the American Control Conference. Philadelphia: IEEE Xplore, 1998: 3420-3424. |
2 | Liu Z , Qi W H . System integration control of HVAC in intelligent building[C]// International Conference on Machine Learning & Cybernetics. Shanghai: IEEE Xplore, 2004: 1125-1130. |
3 | Zhao K , Liu X H , Zhang T , et al . Performance of temperature and humidity independent control air-conditioning system in an office building[J]. Energy and Buildings, 2011, 43: 1895-1903. |
4 | Zavala V M , Anitescu M , Krause T . On the optimal on-line management of photovoltaic-hydrogen hybrid energy systems[J]. Computer Aided Chemical Engineering, 2009, 27(9): 1953-1958. |
5 | Zheng G . Dynamic modeling and global optimal operation of multizone variable air volume HVAC systems[D]. Montreal: Concordia University, 1997. |
6 | Rink R E , Gourishankar V , Zaheeruddin M . Optimal control of heat-pump/heat-storage systems with time-of-day energy price incentive [J]. Journal of Optimization Theory and Applications, 1988, 58(1): 93-108. |
7 | Nassif N , Kajl S , Sabourin R . Simplified model-based optimal control of VAV air-conditioning system[C]//Ninth International IBPSA Conference. Montreal, Canada, 2005: 823-830. |
8 | Clara V , Filip G , Jan V I . Study of the optimal control problem formulation for modulating air-to-water heat pumps connected to a residential floor heating system[J]. Energy and Buildings, 2012, 45: 42-53. |
9 | Logist F , Houska B , Diehl M , et al . Fast Pareto set generation for nonlinear optimal control problems with multiple objectives[J]. Structural and Multidisciplinary Optimization, 2010, 42(4): 591-603. |
10 | 丁强, 邢长新, 江爱朋, 等 . 基于节能的热泵供暖系统动态操作优化研究[J].化工学报, 2015, 66(6): 2166-2173. |
Ding Q , Xing C X , Jiang A P , et al . Dynamic operational optimization of air source heat pump heating system with the consideration of energy saving[J]. CIESC Journal, 2015, 66(6): 2166-2173. | |
11 | Elixmann D , Busch J , Marquardt W . Integration of model-predictive scheduling, dynamic real-time optimization and output tracking for a wastewater treatment process[C]//Proceedings of the 11th International Symposium on Computer Applications in Biotechnology. Leuven, Belgium, 2010: 90-95. |
12 | Huang R . Nonlinear model predictive control and dynamic real time optimization for large scale processes [D]. Pittsburgh: Carnegie-Mellon University, 2010. |
13 | Biegler L T , Yang X , Fischer G A G . Advances in sensitivity-based nonlinear model predictive control and dynamic real-time optimization[J]. Journal of Process Control, 2015, 30: 104-116. |
14 | Chu Y , You F . Model-based integration of control and operations: overview, challenges, advances, and opportunities[J]. Computers and Chemical Engineering, 2015, 83: 2-20. |
15 | Liu X , Chen L , Hu Y . Solution of chemical dynamic optimization using the simultaneous strategies[J]. Chinese Journal of Chemical Engineering, 2013, 21(1): 55-63. |
16 | Assassa F , Marquardt W . Dynamic optimization using adaptive direct multiple shooting[J]. Computers and Chemical Engineering, 2014, 60: 242-259. |
17 | Sobana S , Panda R C . Modeling and control of reverse osmosis desalination process using centralized and decentralized techniques[J]. Desalination, 2014, 344: 243-251. |
18 | Zhou Z , Rees S W , Thomas H R . A numerical and experimental investigation of ground heat transfer including edge insulation effects[J]. Build Environment, 2002, 37(1): 67-78. |
19 | 赵加宁, 宋一平 . 开式系统中水泵变频调速运行特性实验研究[J].煤气与热力, 2016, 36(8): 4-9. |
Zhao J N , Song Y P . Experimental study on operation characteristics of variable frequency speed-regulating pump in opening system[J]. Gas & Heat, 2016, 36(8): 4-9. | |
20 | Shao S , Shi W , Li X , et al . Performance representation of variable-speed compressor for inverter air conditioners based on experimental data[J]. International Journal of Refrigeration, 2004, 27: 805-815. |
21 | Li W . Simplified steady-state modeling for variable speed compressor[J]. Applied Thermal Engineering, 2013, 50(1): 318-326. |
22 | Jähnig D I , Reindl D T , Klein S A . A semi-empirical method for representing domestic refrigerator/freezer compressor calorimeter test data[J]. ASHRAE Transactions, 2000, 106(1): 1204-1265. |
23 | Betts J T . Practical Methods for Optimal Control Using Nonlinear Programming[M]. Philadelphia: SIAM Press, 2001: 95-100. |
24 | Biegler L T . Nonlinear Programming: Concepts, Algorithms and Applications to Chemical Processes[M]. Pittsburgh: SIAM Press, 2010: 289-293. |
25 | Biegler L T . An overview of simultaneous strategies for dynamic optimization[J]. Chemical Engineering and Processing, 2007, 46: 1043-1053. |
26 | Biegler L T , Zavala V M . Large-scale nonlinear programming using IPOPT: an integrating framework for enterprise-wide dynamic optimization[J]. Computers & Chemical Engineering, 2009, 33(3): 575-582. |
[1] | 谈莹莹, 刘晓庆, 王林, 黄鲤生, 李修真, 王占伟. R1150/R600a自复叠制冷循环开机动态特性实验研究[J]. 化工学报, 2023, 74(S1): 213-222. |
[2] | 邹启宏, 李乾, 葛天舒. 基于多目标下的两级并联除湿热泵系统实验研究[J]. 化工学报, 2023, 74(S1): 265-271. |
[3] | 杨天阳, 邹慧明, 周晖, 王春磊, 田长青. -30℃电动汽车补气式CO2热泵制热性能实验研究[J]. 化工学报, 2023, 74(S1): 272-279. |
[4] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[5] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[6] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[7] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[8] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[9] | 常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337. |
[10] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[11] | 仪显亨, 周骛, 蔡小舒, 蔡天意. 光纤后向动态光散射测量纳米颗粒的浓度适用范围研究[J]. 化工学报, 2023, 74(8): 3320-3328. |
[12] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[13] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[14] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[15] | 邵伟明, 韩文学, 宋伟, 杨勇, 陈灿, 赵东亚. 基于分布式贝叶斯隐马尔可夫回归的动态软测量建模方法[J]. 化工学报, 2023, 74(6): 2495-2502. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||