化工学报 ›› 2023, Vol. 74 ›› Issue (S1): 295-301.DOI: 10.11949/0438-1157.20221623
收稿日期:
2022-11-15
修回日期:
2022-12-25
出版日期:
2023-06-05
发布日期:
2023-09-27
通讯作者:
殷勇高
作者简介:
张思雨(1998—),女,硕士研究生,2058182589@qq.com
基金资助:
Siyu ZHANG(), Yonggao YIN(), Pengqi JIA, Wei YE
Received:
2022-11-15
Revised:
2022-12-25
Online:
2023-06-05
Published:
2023-09-27
Contact:
Yonggao YIN
摘要:
跨季节埋管蓄热技术(BTES)可以解决能源供需在时间与空间上不匹配的矛盾,是一种提高能源利用效率的重要手段。通过建立埋管蓄热体的三维瞬态数值模型,实现了埋管蓄热体的三类特征温度以及边界热流的全周期动态监测,同时对系统长周期运行下的热特性进行评估。结果表明,经过全周期运行后土壤体积平均温度与初始状态相比提升10%,蓄热体侧面热损失占总热损失的66%~90%,系统BTES效率逐年上升,运行至第7年基本达到稳定,此时效率可达55.2%。可为BTES系统实际工程设计应用提供一定的参考。
中图分类号:
张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301.
Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group[J]. CIESC Journal, 2023, 74(S1): 295-301.
材料 | 密度/ (kg/m³) | 比热容/ (J/(kg·K)) | 热导率/ (W/(m·K)) |
---|---|---|---|
黏土(0~28 m) | 1980 | 1380 | 1.31 |
致密黏土(28~41 m) | 2050 | 1710 | 1.66 |
细沙(41~62 m) | 1420 | 840 | 0.65 |
回填材料 | 1700 | 1200 | 1.97 |
双U管 | 930 | 2300 | 0.42 |
管内流体 | 998.2 | 4182 | 0.6 |
表1 各材料物性参数汇总
Table 1 Summary of physical parameters of each material
材料 | 密度/ (kg/m³) | 比热容/ (J/(kg·K)) | 热导率/ (W/(m·K)) |
---|---|---|---|
黏土(0~28 m) | 1980 | 1380 | 1.31 |
致密黏土(28~41 m) | 2050 | 1710 | 1.66 |
细沙(41~62 m) | 1420 | 840 | 0.65 |
回填材料 | 1700 | 1200 | 1.97 |
双U管 | 930 | 2300 | 0.42 |
管内流体 | 998.2 | 4182 | 0.6 |
参数 | 数值 |
---|---|
钻孔间距/m | 3 |
埋管深度/m | 60 |
地埋管内径/mm | 26 |
地埋管外径/mm | 32 |
蓄热工况入口温度/℃ | 50 |
取热工况入口温度/℃ | 8 |
入口流速/(m/s) | 0.6 |
表2 模型基本参数设置
Table 2 Basic model parameter settings
参数 | 数值 |
---|---|
钻孔间距/m | 3 |
埋管深度/m | 60 |
地埋管内径/mm | 26 |
地埋管外径/mm | 32 |
蓄热工况入口温度/℃ | 50 |
取热工况入口温度/℃ | 8 |
入口流速/(m/s) | 0.6 |
1 | McKenna R, Fehrenbach D, Merkel E. The role of seasonal thermal energy storage in increasing renewable heating shares: a techno-economic analysis for a typical residential district[J]. Energy and Buildings, 2019, 187: 38-49. |
2 | Semple L, Carriveau R, Ting D S K. A techno-economic analysis of seasonal thermal energy storage for greenhouse applications[J]. Energy and Buildings, 2017, 154: 175-187. |
3 | Rapantova N, Pospisil P, Koziorek J, et al. Optimisation of experimental operation of borehole thermal energy storage[J]. Applied Energy, 2016, 181: 464-476. |
4 | Pavlov G K, Olesen B W. Thermal energy storage—a review of concepts and systems for heating and cooling applications in buildings(Part 1): Seasonal storage in the ground[J]. Hvac & R Research, 2012, 18(3): 515-538. |
5 | Mahon H, O'Connor D, Friedrich D, et al. A review of thermal energy storage technologies for seasonal loops[J]. Energy, 2022, 239: 122207. |
6 | Sarbu I, Sebarchievici C. A comprehensive review of thermal energy storage[J]. Sustainability, 2018, 10(1): 191. |
7 | Matos C R, Carneiro J F, Silva P P. Overview of large-scale underground energy storage technologies for integration of renewable energies and criteria for reservoir identification[J]. The Journal of Energy Storage, 2019, 21(FEB.): 241-258. |
8 | Lyden A, Brown C S, Kolo I, et al. Seasonal thermal energy storage in smart energy systems: district-level applications and modelling approaches[J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112760. |
9 | Yang T, Liu W, Kramer G J, et al. Seasonal thermal energy storage: a techno-economic literature review[J]. Renewable and Sustainable Energy Reviews, 2021, 139(6): 110732. |
10 | Xu J. Performance investigation of a solar heating system with underground seasonal energy storage for greenhouse application[J]. Energy, 2014, 67: 63-73. |
11 | Zhang C X, Wang Y S, Liu Y F, et al. Computational methods for ground thermal response of multiple borehole heat exchangers: a review[J]. Renewable Energy, 2018, 127: 461-473. |
12 | Lefebvre D, Tezel F H. A review of energy storage technologies with a focus on adsorption thermal energy storage processes for heating applications[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 116-125. |
13 | 郭占全, 苑中显, 张琦. 跨季节土壤蓄热太阳能数值模拟研究[J]. 制冷与空调(四川), 2020, 34(4): 399-405. |
Guo Z Q, Yuan Z X, Zhang Q. Numerical simulation of solar energy storage in trans-seasonal soils[J]. Refrigeration & Air Conditioning, 2020, 34(4): 399-405. | |
14 | 李勇, 陈旭东, Shigetoshi Ipposhi, 等. 夏热冬冷地区地下蓄热模拟分析[J]. 太阳能学报, 2020, 41(9): 382-388. |
Li Y, Chen X D, Ipposhi S, et al. Performance simulation of underground seasonal thermal energy storage in hot summer and cold winter zone in China[J]. Acta Energiae Solaris Sinica, 2020, 41(9): 382-388. | |
15 | Abbas Z, Li Y, Abbas S, et al. Performance analysis of seasonal soil heat storage system based on numerical simulation and experimental investigation[J]. Renewable Energy, 2021, 178: 66-78. |
16 | Abbas Z, Chen D W, Li Y, et al. Experimental investigation of underground seasonal cold energy storage using borehole heat exchangers based on laboratory scale sandbox[J]. Geothermics, 2020, 87: 101837. |
17 | Zhu L, Chen S. Global sensitivity analysis on borehole thermal energy storage performances under intermittent operation mode in the first charging phase[J]. Renewable Energy, 2019, 143: 183-198. |
18 | Zhu L, Chen S. Sensitivity analysis on borehole thermal energy storage under intermittent operation mode[J]. Energy Procedia, 2019, 158: 4655-4663. |
19 | Wołoszyn J. Global sensitivity analysis of borehole thermal energy storage efficiency on the heat exchanger arrangement[J]. Energy Conversion and Management, 2018, 166: 106-119. |
20 | 吴晅, 侯正芳, 周雅慧, 等. 竖直U型地埋管群传热特性模拟[J]. 土木建筑与环境工程, 2018, 40(4): 81-87. |
Wu X, Hou Z F, Zhou Y H, et al. Simulation of heat transfer characteristics of vertical U-shaped buried tubes[J]. Journal of Civil, Architectural & Environmental Engineering, 2018, 40(4): 81-87. | |
21 | 吴晅, 周雅慧, 路子业, 等. 地埋管群全年蓄热取热同步模式下岩土传热特性[J]. 地下空间与工程学报, 2020, 16(1): 274-287. |
Wu X, Zhou Y H, Lu Z Y, et al. Annual heat transfer characteristics of soil under heat storage and extraction synchronous mode based on underground heat exchanger group[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(1): 274-287. | |
22 | 刘艳峰, 靳璐, 周勇, 等. 分区串并联地埋管群换热效果影响因素分析[J]. 太阳能学报, 2021, 42(11): 421-428. |
Liu Y F, Jin L, Zhou Y, et al. Analysis of influencing factors on heat transfer effect of subarea series-parallel underground pipe groups[J]. Acta Energiae Solaris Sinica, 2021, 42(11): 421-428. | |
23 | 申刚卫. 邯邢地区岩土热响应测试及其热导率分布研究[D]. 邯郸: 河北工程大学, 2013. |
Shen G W. Soil thermal response test and study on the distribution of the thermal conductivity in Handan-Xingtai area[D]. Handan: Hebei University of Engineering, 2013. | |
24 | 河北省质量技术监督局. 地埋管地源热泵工程技术规范: [S].石家庄: 河北省国土资源厅, 2017. |
Hebei Bureau of Quality and Technical Supervision. Technical specification for buried pipe ground source heat pump engineering: [S]. Shijiazhuang: Hebei Provincial Department of Land and Resources, 2017. | |
25 | 胡松涛, 刘玉朱, 王刚, 等. U型埋管三维非稳态流固耦合传热模拟研究[J]. 青岛理工大学学报, 2014, 35(2): 79-85. |
Hu S T, Liu Y Z, Wang G, et al. Study on 3D unsteady simulation of underground U-tube considered fluid-solid coupling heat transfer[J]. Journal of Qingdao Technological University, 2014, 35(2): 79-85. | |
26 | Beier R A, Smith M D, Spitler J D. Reference data sets for vertical borehole ground heat exchanger models and thermal response test analysis[J]. Geothermics, 2011, 40(1): 79-85. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[4] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[5] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[6] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[7] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[8] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[9] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[10] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[11] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[12] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[13] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[14] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[15] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||