化工学报 ›› 2023, Vol. 74 ›› Issue (S1): 295-301.DOI: 10.11949/0438-1157.20221623
收稿日期:
2022-11-15
修回日期:
2022-12-25
出版日期:
2023-06-05
发布日期:
2023-09-27
通讯作者:
殷勇高
作者简介:
张思雨(1998—),女,硕士研究生,2058182589@qq.com
基金资助:
Siyu ZHANG(), Yonggao YIN(), Pengqi JIA, Wei YE
Received:
2022-11-15
Revised:
2022-12-25
Online:
2023-06-05
Published:
2023-09-27
Contact:
Yonggao YIN
摘要:
跨季节埋管蓄热技术(BTES)可以解决能源供需在时间与空间上不匹配的矛盾,是一种提高能源利用效率的重要手段。通过建立埋管蓄热体的三维瞬态数值模型,实现了埋管蓄热体的三类特征温度以及边界热流的全周期动态监测,同时对系统长周期运行下的热特性进行评估。结果表明,经过全周期运行后土壤体积平均温度与初始状态相比提升10%,蓄热体侧面热损失占总热损失的66%~90%,系统BTES效率逐年上升,运行至第7年基本达到稳定,此时效率可达55.2%。可为BTES系统实际工程设计应用提供一定的参考。
中图分类号:
张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301.
Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group[J]. CIESC Journal, 2023, 74(S1): 295-301.
材料 | 密度/ (kg/m³) | 比热容/ (J/(kg·K)) | 热导率/ (W/(m·K)) |
---|---|---|---|
黏土(0~28 m) | 1980 | 1380 | 1.31 |
致密黏土(28~41 m) | 2050 | 1710 | 1.66 |
细沙(41~62 m) | 1420 | 840 | 0.65 |
回填材料 | 1700 | 1200 | 1.97 |
双U管 | 930 | 2300 | 0.42 |
管内流体 | 998.2 | 4182 | 0.6 |
表1 各材料物性参数汇总
Table 1 Summary of physical parameters of each material
材料 | 密度/ (kg/m³) | 比热容/ (J/(kg·K)) | 热导率/ (W/(m·K)) |
---|---|---|---|
黏土(0~28 m) | 1980 | 1380 | 1.31 |
致密黏土(28~41 m) | 2050 | 1710 | 1.66 |
细沙(41~62 m) | 1420 | 840 | 0.65 |
回填材料 | 1700 | 1200 | 1.97 |
双U管 | 930 | 2300 | 0.42 |
管内流体 | 998.2 | 4182 | 0.6 |
参数 | 数值 |
---|---|
钻孔间距/m | 3 |
埋管深度/m | 60 |
地埋管内径/mm | 26 |
地埋管外径/mm | 32 |
蓄热工况入口温度/℃ | 50 |
取热工况入口温度/℃ | 8 |
入口流速/(m/s) | 0.6 |
表2 模型基本参数设置
Table 2 Basic model parameter settings
参数 | 数值 |
---|---|
钻孔间距/m | 3 |
埋管深度/m | 60 |
地埋管内径/mm | 26 |
地埋管外径/mm | 32 |
蓄热工况入口温度/℃ | 50 |
取热工况入口温度/℃ | 8 |
入口流速/(m/s) | 0.6 |
1 | McKenna R, Fehrenbach D, Merkel E. The role of seasonal thermal energy storage in increasing renewable heating shares: a techno-economic analysis for a typical residential district[J]. Energy and Buildings, 2019, 187: 38-49. |
2 | Semple L, Carriveau R, Ting D S K. A techno-economic analysis of seasonal thermal energy storage for greenhouse applications[J]. Energy and Buildings, 2017, 154: 175-187. |
3 | Rapantova N, Pospisil P, Koziorek J, et al. Optimisation of experimental operation of borehole thermal energy storage[J]. Applied Energy, 2016, 181: 464-476. |
4 | Pavlov G K, Olesen B W. Thermal energy storage—a review of concepts and systems for heating and cooling applications in buildings(Part 1): Seasonal storage in the ground[J]. Hvac & R Research, 2012, 18(3): 515-538. |
5 | Mahon H, O'Connor D, Friedrich D, et al. A review of thermal energy storage technologies for seasonal loops[J]. Energy, 2022, 239: 122207. |
6 | Sarbu I, Sebarchievici C. A comprehensive review of thermal energy storage[J]. Sustainability, 2018, 10(1): 191. |
7 | Matos C R, Carneiro J F, Silva P P. Overview of large-scale underground energy storage technologies for integration of renewable energies and criteria for reservoir identification[J]. The Journal of Energy Storage, 2019, 21(FEB.): 241-258. |
8 | Lyden A, Brown C S, Kolo I, et al. Seasonal thermal energy storage in smart energy systems: district-level applications and modelling approaches[J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112760. |
9 | Yang T, Liu W, Kramer G J, et al. Seasonal thermal energy storage: a techno-economic literature review[J]. Renewable and Sustainable Energy Reviews, 2021, 139(6): 110732. |
10 | Xu J. Performance investigation of a solar heating system with underground seasonal energy storage for greenhouse application[J]. Energy, 2014, 67: 63-73. |
11 | Zhang C X, Wang Y S, Liu Y F, et al. Computational methods for ground thermal response of multiple borehole heat exchangers: a review[J]. Renewable Energy, 2018, 127: 461-473. |
12 | Lefebvre D, Tezel F H. A review of energy storage technologies with a focus on adsorption thermal energy storage processes for heating applications[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 116-125. |
13 | 郭占全, 苑中显, 张琦. 跨季节土壤蓄热太阳能数值模拟研究[J]. 制冷与空调(四川), 2020, 34(4): 399-405. |
Guo Z Q, Yuan Z X, Zhang Q. Numerical simulation of solar energy storage in trans-seasonal soils[J]. Refrigeration & Air Conditioning, 2020, 34(4): 399-405. | |
14 | 李勇, 陈旭东, Shigetoshi Ipposhi, 等. 夏热冬冷地区地下蓄热模拟分析[J]. 太阳能学报, 2020, 41(9): 382-388. |
Li Y, Chen X D, Ipposhi S, et al. Performance simulation of underground seasonal thermal energy storage in hot summer and cold winter zone in China[J]. Acta Energiae Solaris Sinica, 2020, 41(9): 382-388. | |
15 | Abbas Z, Li Y, Abbas S, et al. Performance analysis of seasonal soil heat storage system based on numerical simulation and experimental investigation[J]. Renewable Energy, 2021, 178: 66-78. |
16 | Abbas Z, Chen D W, Li Y, et al. Experimental investigation of underground seasonal cold energy storage using borehole heat exchangers based on laboratory scale sandbox[J]. Geothermics, 2020, 87: 101837. |
17 | Zhu L, Chen S. Global sensitivity analysis on borehole thermal energy storage performances under intermittent operation mode in the first charging phase[J]. Renewable Energy, 2019, 143: 183-198. |
18 | Zhu L, Chen S. Sensitivity analysis on borehole thermal energy storage under intermittent operation mode[J]. Energy Procedia, 2019, 158: 4655-4663. |
19 | Wołoszyn J. Global sensitivity analysis of borehole thermal energy storage efficiency on the heat exchanger arrangement[J]. Energy Conversion and Management, 2018, 166: 106-119. |
20 | 吴晅, 侯正芳, 周雅慧, 等. 竖直U型地埋管群传热特性模拟[J]. 土木建筑与环境工程, 2018, 40(4): 81-87. |
Wu X, Hou Z F, Zhou Y H, et al. Simulation of heat transfer characteristics of vertical U-shaped buried tubes[J]. Journal of Civil, Architectural & Environmental Engineering, 2018, 40(4): 81-87. | |
21 | 吴晅, 周雅慧, 路子业, 等. 地埋管群全年蓄热取热同步模式下岩土传热特性[J]. 地下空间与工程学报, 2020, 16(1): 274-287. |
Wu X, Zhou Y H, Lu Z Y, et al. Annual heat transfer characteristics of soil under heat storage and extraction synchronous mode based on underground heat exchanger group[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(1): 274-287. | |
22 | 刘艳峰, 靳璐, 周勇, 等. 分区串并联地埋管群换热效果影响因素分析[J]. 太阳能学报, 2021, 42(11): 421-428. |
Liu Y F, Jin L, Zhou Y, et al. Analysis of influencing factors on heat transfer effect of subarea series-parallel underground pipe groups[J]. Acta Energiae Solaris Sinica, 2021, 42(11): 421-428. | |
23 | 申刚卫. 邯邢地区岩土热响应测试及其热导率分布研究[D]. 邯郸: 河北工程大学, 2013. |
Shen G W. Soil thermal response test and study on the distribution of the thermal conductivity in Handan-Xingtai area[D]. Handan: Hebei University of Engineering, 2013. | |
24 | 河北省质量技术监督局. 地埋管地源热泵工程技术规范: [S].石家庄: 河北省国土资源厅, 2017. |
Hebei Bureau of Quality and Technical Supervision. Technical specification for buried pipe ground source heat pump engineering: [S]. Shijiazhuang: Hebei Provincial Department of Land and Resources, 2017. | |
25 | 胡松涛, 刘玉朱, 王刚, 等. U型埋管三维非稳态流固耦合传热模拟研究[J]. 青岛理工大学学报, 2014, 35(2): 79-85. |
Hu S T, Liu Y Z, Wang G, et al. Study on 3D unsteady simulation of underground U-tube considered fluid-solid coupling heat transfer[J]. Journal of Qingdao Technological University, 2014, 35(2): 79-85. | |
26 | Beier R A, Smith M D, Spitler J D. Reference data sets for vertical borehole ground heat exchanger models and thermal response test analysis[J]. Geothermics, 2011, 40(1): 79-85. |
[1] | 李舒月, 王欢, 周少强, 毛志宏, 张永民, 王军武, 吴秀花. 基于CPFD方法的U3O8氢还原流化床反应器数值模拟[J]. 化工学报, 2024, 75(9): 3133-3151. |
[2] | 祝赫, 张仪, 齐娜娜, 张锴. 欧拉-欧拉双流体模型中颗粒黏性对液固散式流态化的影响[J]. 化工学报, 2024, 75(9): 3103-3112. |
[3] | 陈巨辉, 苏潼, 李丹, 陈立伟, 吕文生, 孟凡奇. 翅形扰流片作用下的微通道换热特性[J]. 化工学报, 2024, 75(9): 3122-3132. |
[4] | 钱啸宇, 阮璇, 李水清. 外加电场下电介质颗粒层结构重构与悬浮[J]. 化工学报, 2024, 75(8): 2756-2762. |
[5] | 朱子良, 王爽, 姜宇昂, 林梅, 王秋旺. 欧拉-拉格朗日迭代固-液相变算法[J]. 化工学报, 2024, 75(8): 2763-2776. |
[6] | 邓爱明, 何玉荣, 唐天琪, 胡彦伟. 导流板对喷雾流化床内颗粒生长过程影响的模拟[J]. 化工学报, 2024, 75(8): 2787-2799. |
[7] | 罗正航, 李敬宇, 陈伟雄, 种道彤, 严俊杰. 摇摆运动下低流率蒸汽冷凝换热特性和气泡受力数值模拟[J]. 化工学报, 2024, 75(8): 2800-2811. |
[8] | 李倩, 张蓉民, 林子杰, 战琪, 蔡伟华. 基于机器学习的印刷电路板式换热器流动换热预测与仿真[J]. 化工学报, 2024, 75(8): 2852-2864. |
[9] | 曹佳蕾, 孙立岩, 曾德望, 尹凡, 高子翔, 肖睿. 双流化床化学链制氢反应器的数值模拟[J]. 化工学报, 2024, 75(8): 2865-2874. |
[10] | 金虎, 杨帆, 戴梦瑶. 基于格子Boltzmann方法的液滴在圆柱壁面上运动过程研究[J]. 化工学报, 2024, 75(8): 2897-2908. |
[11] | 吕方明, 包志铭, 王博文, 焦魁. 气体扩散层侵入流道对燃料电池水管理影响研究[J]. 化工学报, 2024, 75(8): 2929-2938. |
[12] | 豆少军, 郝亮. PEMFC催化层耦合气体电荷传输过程的介观模拟[J]. 化工学报, 2024, 75(8): 3002-3010. |
[13] | 韩志敏, 李江, 陈则齐, 刘威, 徐志明. 脉动流通道内不同纵向涡发生器的颗粒污垢特性[J]. 化工学报, 2024, 75(7): 2486-2496. |
[14] | 方立昌, 李梓龙, 陈博, 苏政, 贾莉斯, 王智彬, 陈颖. 基于相变微胶囊悬浮液的芯片阵列冷却特性研究[J]. 化工学报, 2024, 75(7): 2455-2464. |
[15] | 周文轩, 刘珍, 张福建, 张忠强. 高通量-高截留率时间维度膜法水处理机理研究[J]. 化工学报, 2024, 75(7): 2583-2593. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 243
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 164
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||