1 |
Saba A , Saha P , Reza M T . Co-hydrothermal carbonization of coal-biomass blend: influence of temperature on solid fuel properties[J]. Fuel Processing Technology, 2017, 167: 711-720.
|
2 |
Kambo H S , Dutta A . A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications[J]. Renewable and Sustainable Energy Reviews, 2015, 45: 359-378.
|
3 |
Parshetti G , Liu Z , Jain A , et al . Hydrothermal carbonization of sewage sludge for energy production with coal[J]. Fuel, 2013, 111(3): 201-210.
|
4 |
Mun T Y , Tumsa T Z , Lee U , et al . Performance evaluation of co-firing various kinds of biomass with low rank coals in a 500 MWe coal-fired power plant[J]. Energy, 2016, 115: 954-962.
|
5 |
Zhuang X Z , Huang Y Q , Liu H C , et al . Relationship between physicochemical properties and dewaterability of hydrothermal sludge derived from different source[J]. Journal of Environmental Sciences, 2018, 69(7): 1-10.
|
6 |
Zhuang X Z , Zhan H , Huang Y Q , et al . Conversion of industrial biowastes to clean solid fuels via hydrothermal carbonization (HTC): upgrading mechanism in relation to coalification process and combustion behavior[J]. Bioresource Technology, 2018, 267: 17-29.
|
7 |
Liao J , Fei Y , Marshall M , et al . Hydrothermal dewatering of a Chinese lignite and properties of the solid products[J]. Fuel, 2016, 180: 473-480.
|
8 |
Wu J H , Wang J , Liu J Z , et al . Moisture removal mechanism of low-rank coal by hydrothermal dewatering: physicochemical property analysis and DFT calculation[J]. Fuel, 2017, 187: 242-249.
|
9 |
Liu J Z , Wu J H , Zhu J F , et al . Removal of oxygen functional groups in lignite by hydrothermal dewatering: an experimental and DFT study[J]. Fuel, 2016, 178: 85-92.
|
10 |
Alvarez R , Clemente C , Gomez-Limon D . The influence of nitric acid oxidation of low rank coal and its impact on coal structure [J]. Fuel, 2003, 82(15): 2007-2015.
|
11 |
Zhuang X Z , Huang Y Q , Song Y P , et al . The transformation pathways of nitrogen in sewage sludge during hydrothermal treatment[J]. Bioresource Technology, 2017, 245(Pt A): 463-470.
|
12 |
Zhang X J , Zhang L , Li A M . Hydrothermal co-carbonization of sewage sludge and pinewood sawdust for nutrient-rich hydrochar production: synergistic effects and products characterization[J]. Journal of Environmental Management, 2017, 201(2): 52-62.
|
13 |
Yao Z L , Ma X Q . Characteristics of co-hydrothermal carbonization on polyvinyl chloride wastes with bamboo[J]. Bioresource Technology, 2017, 247: 302-309.
|
14 |
王定美, 王跃强, 袁浩然, 等 . 水热炭化制备污泥生物炭的碳固定[J]. 化工学报, 2013, 64(7): 2625-2632.
|
|
Wang D M , Wang Y Q , Yuan H R , et al . Carbon fixation of sludge biochar by hydrothermal carbonization[J]. CIESC Journal, 2013, 64(7): 2625-2632.
|
15 |
Liao Y F , Ma X Q . Thermogravimetric analysis of the co-combustion of coal and paper mill sludge[J]. Applied Energy, 2010, 87(11): 3526-3532.
|
16 |
Li F Y , Cao X D , Zhao L , et al . Effects of mineral additives on biochar formation: carbon retention, stability, and properties[J]. Environmental Science & Technology, 2014, 48(19): 11211-11217.
|
17 |
Tay J H , Chen X G , Jeyaseelan S , et al . Optimising the preparation of activated carbon from digested sewage sludge and coconut husk[J]. Chemosphere, 2001, 44(1): 45-51.
|
18 |
Seredych M , Bandosz T J . Tobacco waste/industrial sludge based desulfurization adsorbents: effect of phase interactions during pyrolysis on surface activity[J]. Environmental Science & Technology, 2007, 41(10): 3715-3721.
|
19 |
Xie C D , Liu J Y , Xie W M , et al . Quantifying thermal decomposition regimes of textile dyeing sludge, pomelo peel, and their blends[J]. Renewable Energy, 2018, 122: 55-64.
|
20 |
Xie C D , Liu J Y , Zhang X C , et al . Co-combustion thermal conversion characteristics of textile dyeing sludge and pomelo peel using TGA and artificial neural networks[J]. Applied Energy, 2018, 212: 786-795.
|
21 |
庄修政, 黄艳琴, 阴秀丽, 等 . 污泥水热处理制备清洁燃料的研究进展[J]. 化工进展, 2018, 37(1): 311-318.
|
|
Zhuang X Z , Huang Y Q , Yin X L , et al . Research on clean solid fuel derived from sludge employing hydrothermal treatment[J]. Chemical Industry and Engineering Progress, 2018, 37(1): 311-318.
|
22 |
庄修政, 宋艳培, 詹昊, 等 .水热污泥与煤在混燃过程中的协同效应特性研究[J]. 燃料化学学报, 2018, 46(12): 1437-1446.
|
|
Zhuang X Z , Song Y P , Zhan H , et al . Synergistic effects in co-combusting of hydrochar derived from sewage sludge with different-rank coals[J]. Journal of Fuel Chemistry and Technology, 2018, 46(12): 1437-1446.
|
23 |
Zornoza R , Moreno-Barriga E , Acosta J A , et al . Stability, nutrient availability and hydrophobicity of biochars derived from manure, crop residues, and municipal solid waste for their use as soil amendments[J]. Chemosphere, 2016, 144: 122-130.
|
24 |
Barbanera M , Cotana F , Di-Matteo U . Co-combustion performance and kinetic study of solid digestate with gasification biochar[J]. Renewable Energy, 2018, 121: 597-605.
|
25 |
He C , Giannis A , Wang J Y . Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: hydrochar fuel characteristics and combustion behavior[J]. Applied Energy, 2013, 111: 257-266.
|
26 |
He C , Wang K , Yang Y H , et al . Utilization of sewage-sludge-derived hydrochars toward efficient cocombustion with different-rank coals: effects of subcritical water conversion and blending scenarios[J]. Energy & Fuels, 2014, 28(9): 6140-6150.
|
27 |
Gil M V , Oulego P , Casal M D , et al . Mechanical durability and combustion characteristics of pellets from biomass blends[J]. Bioresource Technology, 2010, 101: 8859-8867.
|
28 |
Mursito A T , Hirajima T , Sasaki K . Upgrading and dewatering of raw tropical peat by hydrothermal treatment[J]. Fuel, 2010, 89(3): 635-641.
|
29 |
Peng C , Zhai Y B , Zhu Y , et al . Production of char from sewage sludge employing hydrothermal carbonization: char properties, combustion behavior and thermal characteristics[J]. Fuel, 2016, 176: 110-118.
|
30 |
Nonaka M , Hirajima T , Sasaki K . Upgrading of low rank coal and woody biomass mixture by hydrothermal treatment[J]. Fuel, 2011, 90(8): 2578-2584.
|