化工学报 ›› 2022, Vol. 73 ›› Issue (11): 5088-5097.DOI: 10.11949/0438-1157.20220920
收稿日期:
2022-06-29
修回日期:
2022-08-26
出版日期:
2022-11-05
发布日期:
2022-12-06
通讯作者:
朱锡锋
作者简介:
王润涛(1998—),男,硕士研究生,wangruntao111@163.com
基金资助:
Runtao WANG(), Zejun LUO, Chu WANG, Xifeng ZHU(
)
Received:
2022-06-29
Revised:
2022-08-26
Online:
2022-11-05
Published:
2022-12-06
Contact:
Xifeng ZHU
摘要:
利用热重分析仪和两段式固定床研究了生物油蒸馏残渣(DR)与废弃塑料(MS)的共热解特性,探索了DR与MS混合比、无催化、原位催化及异位催化对产物分布及液相产物化学组分的影响,以及共热解产物的相对选择性与协同作用。结果表明:随着混合比的增加,液相产率呈现增长趋势;相比于无催化,原位催化、异位催化下液相产物中芳烃相对含量增高、含氧化合物相对含量降低。在原位催化下,DR与MS在脂肪族化合物与含氧化合物上表现出的协同作用与异位催化、无催化相反。对于单环芳烃,DR与MS的协同作用参数值大小关系为:无催化>异位催化>原位催化;对于脂肪烃,在DR∶MS=1∶1时,无催化、原位与异位催化下的协同作用参数最大,分别为-20.7%、25.2%、-41.2%;对于脂环烃,在DR∶MS=2∶1时,无催化、原位与异位催化下的协同作用参数最大,分别为184.2%、132.5%、50.0%;对于多环芳烃,DR与MS在不同催化方式下均表现为负协同作用。
中图分类号:
王润涛, 罗泽军, 王储, 朱锡锋. 生物油蒸馏残渣与废弃塑料催化共热解协同作用的研究[J]. 化工学报, 2022, 73(11): 5088-5097.
Runtao WANG, Zejun LUO, Chu WANG, Xifeng ZHU. Synergistic effect during catalytic co-pyrolysis of bio-oil distillation residue and waste plastic[J]. CIESC Journal, 2022, 73(11): 5088-5097.
样品 | 工业分析/%(mass) | 元素分析/%(mass) | H/Ceff | ||||||
---|---|---|---|---|---|---|---|---|---|
M | V | FC① | A | C | H | O① | N | ||
DR | 3.47 | 73.66 | 21.99 | 0.88 | 71.99 | 6.85 | 19.88 | 1.28 | 0.93 |
MS | — | 99.85 | 0.13 | 0.02 | 83.89 | 15.97 | 0 | 0.14 | 2.28 |
表 1 原料的工业分析和元素分析
Table 1 Proximate and ultimate analysis of raw materials
样品 | 工业分析/%(mass) | 元素分析/%(mass) | H/Ceff | ||||||
---|---|---|---|---|---|---|---|---|---|
M | V | FC① | A | C | H | O① | N | ||
DR | 3.47 | 73.66 | 21.99 | 0.88 | 71.99 | 6.85 | 19.88 | 1.28 | 0.93 |
MS | — | 99.85 | 0.13 | 0.02 | 83.89 | 15.97 | 0 | 0.14 | 2.28 |
1 | Diao R, Sun M C, Huang Y T, et al. Synergistic effect of washing pretreatment and co-pyrolysis on physicochemical property evolution of biochar derived from bio-oil distillation residue and walnut shell[J]. Journal of Analytical and Applied Pyrolysis, 2021, 155: 105034. |
2 | Zhu X F, Zhang Y M, Li S Y, et al. Optimizing the distribution of pyrolysis syngas from bio-oil distillation residue by adding bituminous coal under different induction conditions[J]. Fuel, 2019, 238: 59-65. |
3 | Diao R, Lu H, Yang Y J, et al. Strategic valorization of bio-oil distillation sludge via gasification: a comparative study for reactivities, kinetics, prediction and ash deposition[J]. Chemical Engineering Journal, 2022, 433: 134334. |
4 | Zhang H Y, Cheng Y T, Vispute T P, et al. Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: the hydrogen to carbon effective ratio[J]. Energy & Environmental Science, 2011, 4(6): 2297. |
5 | Harussani M M, Sapuan S M, Rashid U, et al. Pyrolysis of polypropylene plastic waste into carbonaceous char: priority of plastic waste management amidst COVID-19 pandemic[J]. Science of the Total Environment, 2022, 803: 149911. |
6 | Shoinkhorova T, Cordero-Lanzac T, Ramirez A, et al. Highly selective and stable production of aromatics via high-pressure methanol conversion[J]. ACS Catalysis, 2021, 11(6): 3602-3613. |
7 | Sebestyén Z, Barta-Rajnai E, Bozi J, et al. Thermo-catalytic pyrolysis of biomass and plastic mixtures using HZSM-5[J]. Applied Energy, 2017, 207: 114-122. |
8 | Zhang X S, Lei H W, Zhu L, et al. Thermal behavior and kinetic study for catalytic co-pyrolysis of biomass with plastics[J]. Bioresource Technology, 2016, 220: 233-238. |
9 | Xiang Z P, Liang J H, Morgan H M, et al. Thermal behavior and kinetic study for co-pyrolysis of lignocellulosic biomass with polyethylene over cobalt modified ZSM-5 catalyst by thermogravimetric analysis[J]. Bioresource Technology, 2018, 247: 804-811. |
10 | Zhang H Y, Luo B B, Wu K, et al. Ex-situ catalytic pyrolysis of lignin using lignin-carbon catalyst combined with HZSM-5 to improve the yield of high-quality liquid fuels[J]. Fuel, 2022, 318: 123635. |
11 | Pan R M, Martins M F, Debenest G. Optimization of oil production through ex-situ catalytic pyrolysis of waste polyethylene with activated carbon[J]. Energy, 2022, 248: 123514. |
12 | 李承宇, 张军, 袁浩然, 等. 纤维素热解转化的研究进展[J]. 燃料化学学报, 2021, 49(12): 1733-1751. |
Li C Y, Zhang J, Yuan H R, et al. Advance on the pyrolytic transformation of cellulose[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1733-1751. | |
13 | 惠贺龙, 李松庚, 宋文立. 生物质与废塑料催化热解制芳烃(Ⅰ): 协同作用的强化[J]. 化工学报, 2017, 68(10): 3832-3840. |
Hui H L, Li S G, Song W L. Aromatic hydrocarbon from catalytic pyrolysis of biomass and plastic wastes(Ⅰ): Enhancing synergistic effect[J]. CIESC Journal, 2017, 68(10): 3832-3840. | |
14 | Duan D L, Wang Y P, Dai L L, et al. Ex-situ catalytic co-pyrolysis of lignin and polypropylene to upgrade bio-oil quality by microwave heating[J]. Bioresource Technology, 2017, 241: 207-213. |
15 | Ding K, He A X, Zhong D X, et al. Improving hydrocarbon yield via catalytic fast co-pyrolysis of biomass and plastic over ceria and HZSM-5: an analytical pyrolyzer analysis[J]. Bioresource Technology, 2018, 268: 1-8. |
16 | Xue Y, Bai X L. Synergistic enhancement of product quality through fast co-pyrolysis of acid pretreated biomass and waste plastic[J]. Energy Conversion and Management, 2018, 164: 629-638. |
17 | Wang J, Zhong Z P, Ding K, et al. Catalytic fast co-pyrolysis of bamboo sawdust and waste tire using a tandem reactor with cascade bubbling fluidized bed and fixed bed system[J]. Energy Conversion and Management, 2019, 180: 60-71. |
18 | Zhang H Y, Shao S S, Luo M M, et al. The comparison of chemical liquid deposition and acid dealumination modified ZSM-5 for catalytic pyrolysis of pinewood using pyrolysis-gas chromatography/mass spectrometry[J]. Bioresource Technology, 2017, 244: 726-732. |
19 | Wang Z W, Burra K G, Lei T Z, et al. Co-pyrolysis of waste plastic and solid biomass for synergistic production of biofuels and chemicals—a review[J]. Progress in Energy and Combustion Science, 2021, 84: 100899. |
20 | 贺兴处, 陈德珍. 典型聚乙烯、聚丙烯、聚苯乙烯废塑料共热解初期反应特性的ReaxFF分子模拟研究[J]. 燃料化学学报, 2022, 50(3): 346-356. |
He X C, Chen D Z. ReaxFF MD study on the early stage co-pyrolysis of mixed PE/PP/PS plastic waste[J]. Journal of Fuel Chemistry and Technology, 2022, 50(3): 346-356. | |
21 | 于冬雪, 惠贺龙, 何京东, 等. 塑料与蜡(重油)催化共热解相互作用研究[J]. 化工学报, 2019, 70(8): 2971-2980. |
Yu D X, Hui H L, He J D, et al. Study on interaction between plastic with wax (heavy oil) in process of catalytic co-pyrolysis[J], CIESC Journal, 2019, 70(8): 2971-2980. | |
22 | Özsin G, Pütün A E. A comparative study on co-pyrolysis of lignocellulosic biomass with polyethylene terephthalate, polystyrene, and polyvinyl chloride: synergistic effects and product characteristics[J]. Journal of Cleaner Production, 2018, 205: 1127-1138. |
23 | Liu X, Burra K G, Wang Z W, et al. On deconvolution for understanding synergistic effects in co-pyrolysis of pinewood and polypropylene[J]. Applied Energy, 2020, 279: 115811. |
24 | Zhang B, Zhong Z P, Zhang J, et al. Catalytic fast co-pyrolysis of biomass and fusel alcohol to enhance aromatic hydrocarbon production over ZSM-5 catalyst in a fluidized bed reactor[J]. Journal of Analytical and Applied Pyrolysis, 2018, 133: 147-153. |
25 | Niu M M, Sun R Y, Ding K, et al. Synergistic effect on thermal behavior and product characteristics during co-pyrolysis of biomass and waste tire: influence of biomass species and waste blending ratios[J]. Energy, 2022, 240: 122808. |
26 | Rocha M V, Vinuesa A J, Pierella L B, et al. Enhancement of bio-oil obtained from co-pyrolysis of lignocellulose biomass and LDPE by using a natural zeolite[J]. Thermal Science and Engineering Progress, 2020, 19: 100654. |
27 | 黄明, 朱亮, 丁紫霞, 等.生物质三组分与低密度聚乙烯共催化热解制取轻质芳烃的协同作用机理[J]. 化工学报, 2022, 73(2): 699-711. |
Huang M, Zhu L, Ding Z X, et al. Synergistic interactions of biomass three-component and low-density polyethylene during co-catalytic fast pyrolysis for the production of light aromatics[J]. CIESC Journal, 2022, 73(2): 699-711. | |
28 | Zheng A Q, Huang Z, Wei G Q, et al. Controlling deoxygenation pathways in catalytic fast pyrolysis of biomass and its components by using metal-oxide nanocomposites[J]. iScience, 2020, 23(1): 100814. |
29 | Zhao Y F, Wang Y P, Duan D L, et al. Fast microwave-assisted ex-catalytic co-pyrolysis of bamboo and polypropylene for bio-oil production[J]. Bioresource Technology, 2018, 249: 69-75. |
30 | Kim Y M, Jae J, Kim B S, et al. Catalytic co-pyrolysis of torrefied yellow poplar and high-density polyethylene using microporous HZSM-5 and mesoporous Al-MCM-41 catalysts[J]. Energy Conversion and Management, 2017, 149: 966-973. |
31 | Uzoejinwa B B, He X H, Wang S, et al. Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: recent progress and future directions elsewhere worldwide[J]. Energy Conversion and Management, 2018, 163: 468-492. |
32 | Ke L Y, Wang Y P, Wu Q H, et al. Pressurized ex-situ catalytic co-pyrolysis of polyethylene and lignin: efficient BTEX production and process mechanism analysis[J]. Chemical Engineering Journal, 2022, 431: 134122. |
[1] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[2] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[3] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[4] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[5] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[6] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[7] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[8] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[9] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[10] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[11] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[12] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[13] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[14] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[15] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 166
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 320
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||