1 |
Logan B E , Wallack M J , Kim K Y , et al . Assessment of microbial fuel cell configurations and power densities[J]. Environmental Science & Technology Letters, 2015, 2: 206-214.
|
2 |
Xie Y , Ma Z , Song H , et al . Melamine modified carbon felts anode with enhanced electrogenesis capacity toward microbial fuel cells[J]. Journal of Energy Chemistry, 2017, 26(1): 81-86.
|
3 |
Logan B E . Microbial Fuel Cells[M]. John Wiley & Sons, Inc. , 2008: 61-84.
|
4 |
Xia C , Zhang D , Peddrvz W , et al . Models for microbial fuel cells: a critical review[J]. The Journal of Engineering, 2017, (13): 1269.
|
5 |
Zhang J , Li J , Ye D , et al . Enhanced performances of microbial fuel cells using surface-modified carbon cloth anodes: a comparative study[J]. International Journal of Hydrogen Energy, 2014, 39(33): 19148-19155.
|
6 |
王维大, 李浩然, 冯雅丽, 等 . 微生物燃料电池的研究应用进展[J]. 化工进展, 2014, 33(5): 1067-1076.
|
|
Wang W D , Li H R , Feng Y L , et al . Progress in research and application of microbial fuel cells[J]. Chemical Industry and Engineering Progress, 2014, 33(5): 1067-1076.
|
7 |
Zhu N , Chen X , Zhang T , et al . Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes[J]. Bioresource Technology, 2011, 102(1): 422-426.
|
8 |
Liu J , He W . Enhanced electricity generation for microbial fuel cell by using electrochemical oxidation to modify carbon cloth anode[J]. Journal of Power Sources, 2014, 265: 391-396.
|
9 |
Xin W , Cheng S A , Feng Y J , et al . Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells[J]. Environmental Science & Technology, 2009, 43(17): 6870-6874.
|
10 |
Feng C , Ma L , Li F , et al . A polypyrrole/anthraquinone-2, 6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells[J]. Biosensors & Bioelectronics, 2010, 25(6): 1516-1520.
|
11 |
Batzill M . The surface science of graphene: metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects[J]. Cheminform, 2013, 67(3): 83-115.
|
12 |
Agarwal S , Zhou X , Ye F , et al . Interfacing live cells with nanocarbon substrates[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2010, 26(4): 2244.
|
13 |
Chao L , Zhang L B , Ding L L , et al . Effect of conductive polymers coated anode on the performance of microbial fuel cells (MFCs) and its biodiversity analysis [J]. Biosensors & Bioelectronics, 2011, 26(10): 4169-4176.
|
14 |
黄力华, 李秀芬, 任月萍, 等 . 石墨烯掺杂聚苯胺阳极提高微生物燃料电池性能[J]. 环境科学, 2017, 38(4): 1717-1725.
|
|
Huang L H , Li X F , Ren Y P , et al . Graphene-doped polyaniline anodes improve microbial fuel cell performance [J]. Environmental Science, 2017, 38(4): 1717-1725.
|
15 |
Liao Z H , Sun J Z , Sun D Z , et al . Enhancement of power production with tartaric acid doped polyaniline nanowire network modified anode in microbial fuel cells[J]. Bioresource Technology, 2015, 192(2): 831-834.
|
16 |
Hou J , Liu Z , Zhang P . A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes[J]. Journal of Power Sources, 2013, 224(4): 139-144.
|
17 |
Yong Y C , Dong X C , Chanpark M B , et al . Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells[J]. ACS Nano, 2012, 6(3): 2394.
|
18 |
周扬 . 石墨烯聚苯胺修饰电极在双室微生物燃料电池中的应用研究[D]. 西安: 长安大学, 2015.
|
|
Zhou Y . Application of graphene polyaniline modified electrode in dual-chamber microbial fuel cell[D]. Xi an: Chang an University, 2015.
|
19 |
Sun D Z , Yu Y Y , Xie R R , et al . In-situ growth of graphene/polyaniline for synergistic improvement of extracellular electron transfer in bioelectrochemical systems[J]. Biosensors and Bioelectronics, 2017, 87: 195-202.
|
20 |
何海波, 王许云, 白立俊, 等 . 石墨烯/聚苯胺复合阳极的制备及在MFC中的应用[J]. 化工学报, 2014, 65(6): 2186-2192.
|
|
He H B , Wang X Y , Bai L J , et al . Preparation of graphene/polyaniline composite anode and its application in MFC[J]. CIESC Journal, 2014, 65(6): 2186-2192.
|
21 |
Liu J , Qiao Y , Guo C X , et al . Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells[J]. Bioresource Technology, 2012, 114(3): 275-280.
|
22 |
Yeltik A , Kucukayan-Dogu G , Guzelturk B , et al . Evidence for nonradiative energy transfer in graphene-oxide-based hybrid structures[J]. J. Phys.Chem.C, 2013, 117(48): 25298-25304.
|
23 |
Zhang K , Zhang L L , Zhao X S , et al . Graphene/polyaniline nanofiber composites as supercapacitor electrodes[J]. Chemistry of Materials, 2010, 22(4): 1392-1401.
|
24 |
Yan J , Wei T , Shao B , et al . Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance[J]. Carbon, 2010, 48(2): 487-493.
|
25 |
王宏智, 高翠侠, 张鹏, 等 . 石墨烯/聚苯胺复合材料的制备及其电化学性能[J]. 物理化学学报, 2013, 29(1): 117-122.
|
|
Wang H Z , Gao C X , Zhang P , et al . Preparation and electrochemical properties of graphene/polyaniline composites[J]. Acta Phys. Sinica, 2013, 29(1): 117-122.
|
26 |
Qi Q , Wang X Y , He H B , et al . Preparation and performance of PANI film anodes for MFC[J]. Science & Technology Review, 2015, 33(14): 82-86.
|
27 |
Zhang L , Long Y , Chen Z , et al . The effect of hydrogen bonding on self‐assembled polyaniline nanostructures[J]. Advanced Functional Materials, 2010, 14(7): 693-698.
|
28 |
Wu W , Pan D , Li Y , et al . Facile fabrication of polyaniline nanotubes using the self-assembly behavior based on the hydrogen bonding: a mechanistic study and application in high-performance electrochemical supercapacitor electrode[J]. Electrochimica Acta, 2015, 152: 126-134.
|
29 |
李晓霞, 许鹏程 . 掺杂硫酸浓度对聚苯胺膜性能的影响[J]. 电子元件与材料, 2006, 25(3): 27-29.
|
|
Li X X , Xu P C . Effect of doping sulfuric acid concentration on properties of polyaniline films[J]. Electronic Components & Materials, 2006, 25(3): 27-29.
|
30 |
Li Y , Zhao X , Yu P , et al . Oriented arrays of polyaniline nanorods grown on graphite nanosheets for an electrochemical supercapacitor[J]. Langmuir, 2013, 29(1): 493-500.
|
31 |
Yu Y Y , Guo X C , Yong Y C , et al . Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode[J]. Chemosphere, 2015, 140: 26-33.
|
32 |
Strycharz S M , Malanoski A P , Snider R M , et al . Application of cyclic voltammetry to investigate enhanced catalytic current generation by biofilm-modified anodes of Geobacter sulfurreducens strain DL1 vs. variant strain KN400[J]. Energy & Environmental Science, 2011, 4(3): 896-913.
|
33 |
Qian D , Chang C I . A linear constrained distance-based discriminant analysis for hyperspectral image classification[J]. Pattern Recognition, 2001, 34(2): 361-373.
|
34 |
Langhus D L . Fundamentals of electroanalytical chemistry [J]. Journal of Chemical Education, 2002, 79(10): 1207-1208.
|