化工学报 ›› 2022, Vol. 73 ›› Issue (2): 699-711.DOI: 10.11949/0438-1157.20211387
收稿日期:
2021-09-27
修回日期:
2021-10-22
出版日期:
2022-02-05
发布日期:
2022-02-18
通讯作者:
马中青
作者简介:
黄明(1996—),男,博士研究生,基金资助:
Ming HUANG(),Liang ZHU,Zixia DING,Yiting MAO,Zhongqing MA()
Received:
2021-09-27
Revised:
2021-10-22
Online:
2022-02-05
Published:
2022-02-18
Contact:
Zhongqing MA
摘要:
生物质与废塑料共催化快速热解是制取轻质芳烃的重要途径。 采用不同种类的分子筛催化剂,首先研究了分子筛种类对杨木、生物质三组分和低密度聚乙烯(LDPE)单独催化快速热解轻质芳烃产率的影响,其次研究了生物质三组分与LDPE在共催化热解过程中的协同作用机理。结果表明:在杨木、生物质三组分和LDPE单独催化快速热解时,HZSM-5(25)催化剂体现出最高的轻质芳烃产率;在杨木和LDPE共催化快速热解时,随着LDPE质量的增加,轻质芳烃的产率呈先升高后降低趋势;在生物质三组分和LDPE共催化快速热解时,纤维素和半纤维素热解的呋喃类中间产物与LDPE热解的轻烯烃中间产物易发生“双烯合成”反应,表现出较强的协同催化作用,促进轻质芳烃的生成,而木质素则抑制轻质芳烃生成。
中图分类号:
黄明, 朱亮, 丁紫霞, 毛一婷, 马中青. 生物质三组分与低密度聚乙烯共催化热解制取轻质芳烃的协同作用机理[J]. 化工学报, 2022, 73(2): 699-711.
Ming HUANG, Liang ZHU, Zixia DING, Yiting MAO, Zhongqing MA. Synergistic interactions of biomass three-component and low-density polyethylene during co-catalytic fast pyrolysis for the production of light aromatics[J]. CIESC Journal, 2022, 73(2): 699-711.
原料 | 元素分析/% | 工业分析/% | 有效 氢碳比 | 低位热值/ (MJ/kg) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
C | H | O | N | S | 挥发分 | 固定碳 | 灰分 | |||
杨木 | 47.21 | 6.04 | 46.74 | 0.01 | 0.00 | 87.95 | 10.93 | 1.12 | 0.050 | 16.25 |
木质素 | 63.58 | 5.35 | 30.52 | 0.55 | 0.00 | 66.24 | 33.70 | 0.06 | 0.289 | 23.72 |
纤维素 | 43.21 | 6.30 | 50.33 | 0.00 | 0.16 | 94.41 | 5.59 | 0.00 | 0.002 | 14.62 |
木聚糖 | 42.99 | 6.43 | 50.40 | 0.00 | 0.18 | 93.30 | 6.70 | 0.00 | 0.036 | 14.73 |
LDPE | 84.21 | 14.29 | 1.47 | 0.03 | 0.00 | 99.79 | 0.21 | 0.00 | 2.010 | 48.83 |
表1 杨木、生物质三组分和LDPE的元素分析、工业分析和热值
Table 1 Ultimate and proximate analysis, and calorific value of poplar wood, three major components of biomass, and LDPE
原料 | 元素分析/% | 工业分析/% | 有效 氢碳比 | 低位热值/ (MJ/kg) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
C | H | O | N | S | 挥发分 | 固定碳 | 灰分 | |||
杨木 | 47.21 | 6.04 | 46.74 | 0.01 | 0.00 | 87.95 | 10.93 | 1.12 | 0.050 | 16.25 |
木质素 | 63.58 | 5.35 | 30.52 | 0.55 | 0.00 | 66.24 | 33.70 | 0.06 | 0.289 | 23.72 |
纤维素 | 43.21 | 6.30 | 50.33 | 0.00 | 0.16 | 94.41 | 5.59 | 0.00 | 0.002 | 14.62 |
木聚糖 | 42.99 | 6.43 | 50.40 | 0.00 | 0.18 | 93.30 | 6.70 | 0.00 | 0.036 | 14.73 |
LDPE | 84.21 | 14.29 | 1.47 | 0.03 | 0.00 | 99.79 | 0.21 | 0.00 | 2.010 | 48.83 |
图3 分子筛种类对杨木及生物质三组分单独催化快速热解生物油组分的影响
Fig.3 Effect of the types of catalyst on the product distribution of bio-oil derived from catalytic fast pyrolysis of poplar wood and three major components of biomass
图4 分子筛种类对LDPE单独催化热解生物油组分的影响
Fig.4 Effect of different zeolite catalysts on the product distribution of bio-oil derived from catalytic fast pyrolysis of LDPE
图5 杨木与LDPE共催化热解过程中生物油组分分布和协同效果
Fig.5 Distribution of bio-oil components and synergistic reaction abundance derived from co-catalytic fast pyrolysis of poplar wood and LDPE
图6 生物质三组分与LDPE共催化热解过程中生物油组分分布和协同效果
Fig.6 Distribution of bio-oil components and synergistic reaction abundance derived from co-catalytic fast pyrolysis of three major components of biomass and LDPE
图7 生物质三组分与LDPE共催化热解制取轻质芳烃的机理
Fig.7 Formation mechanism of the aromatic hydrocarbon derived from co-catalytic fast pyrolysis of three major components of biomass and LDPE
1 | Zhang H Y, Nie J L, Xiao R, et al. Catalytic co-pyrolysis of biomass and different plastics (polyethylene, polypropylene, and polystyrene) to improve hydrocarbon yield in a fluidized-bed reactor[J]. Energy & Fuels, 2014, 28(3): 1940-1947. |
2 | Ding K, He A X, Zhong D X, et al. Improving hydrocarbon yield via catalytic fast co-pyrolysis of biomass and plastic over ceria and HZSM-5: an analytical pyrolyzer analysis[J]. Bioresource Technology, 2018, 268: 1-8. |
3 | Dorado C, Mullen C A, Boateng A A. H-ZSM5 catalyzed co-pyrolysis of biomass and plastics[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(2):301-311. |
4 | Zhang H Y, Xiao R, Nie J L, et al. Catalytic pyrolysis of black-liquor lignin by co-feeding with different plastics in a fluidized bed reactor[J]. Bioresource Technology, 2015, 192: 68-74. |
5 | Shen D K, Zhao J, Xiao R. Catalytic transformation of lignin to aromatic hydrocarbons over solid-acid catalyst: effect of lignin sources and catalyst species[J]. Energy Conversion and Management, 2016, 124: 61-72. |
6 | Artetxe M, Lopez G, Amutio M, et al. Light olefins from HDPE cracking in a two-step thermal and catalytic process[J]. Chemical Engineering Journal, 2012, 207/208: 27-34. |
7 | Huang M, Xu J L, Ma Z Q, et al. Bio-BTX production from the shape selective catalytic fast pyrolysis of lignin using different zeolite catalysts: relevance between the chemical structure and the yield of bio-BTX[J]. Fuel Processing Technology, 2021, 216: 106792. |
8 | 孙来芝, 陈雷, 赵保峰, 等. Mo/ZSM-5催化作用下生物质快速热解制生物油实验研究[J]. 化工学报, 2019, 70(8): 3160-3166. |
Sun L Z, Chen L, Zhao B F, et al. Experiment research on catalytic fast pyrolysis of biomass into bio-oils over Mo/ZSM-5 catalyst[J]. CIESC Journal, 2019, 70(8): 3160-3166. | |
9 | Ryu H W, Kim D H, Jae J, et al. Recent advances in catalytic co-pyrolysis of biomass and plastic waste for the production of petroleum-like hydrocarbons[J]. Bioresource Technology, 2020, 310: 123473. |
10 | Shadangi K P, Mohanty K. Co-pyrolysis of Karanja and Niger seeds with waste polystyrene to produce liquid fuel[J]. Fuel, 2015, 153:492-498. |
11 | Uzoejinwa B B, He X H, Wang S, et al. Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: recent progress and future directions elsewhere worldwide[J]. Energy Conversion and Management, 2018, 163: 468-492. |
12 | Dorado C, Mullen C A, Boateng A A. Origin of carbon in aromatic and olefin products derived from HZSM-5 catalyzed co-pyrolysis of cellulose and plastics via isotopic labeling[J]. Applied Catalysis B: Environmental, 2015, 162: 338-345. |
13 | Hendriks A T W M, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass[J]. Bioresource Technology, 2009, 100(1): 10-18. |
14 | Wang S R, Liu Q, Liao Y F, et al. A study on the mechanism research on cellulose pyrolysis under catalysis of metallic salts[J]. Korean Journal of Chemical Engineering, 2007, 24(2): 336-340. |
15 | Zhang H Y, Cheng Y T, Vispute T P, et al. Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: the hydrogen to carbon effective ratio[J]. Energy & Environmental Science, 2011, 4(6): 2297. |
16 | Li Z Y, Zhong Z P, Zhang B, et al. Catalytic fast co-pyrolysis of waste greenhouse plastic films and rice husk using hierarchical micro-mesoporous composite molecular sieve[J]. Waste Management, 2020, 102: 561-568. |
17 | 姚维坤, 周国强, 张先龙, 等. 复合改性ZSM-5催化热解松木和低密度聚乙烯的研究[J]. 太阳能学报, 2016, 37(6): 1521-1527. |
Yao W K, Zhou G Q, Zhang X L, et al. Catalytic co-pyrolysis of pinewood and low-density polyethylene with modified ZSM-5 zeolite catalysts[J]. Acta Energiae Solaris Sinica, 2016, 37(6): 1521-1527. | |
18 | Liu Q, Zhong Z P, Wang S R, et al. Interactions of biomass components during pyrolysis: a TG-FTIR study[J]. Journal of Analytical and Applied Pyrolysis, 2011, 90(2):213-218. |
19 | Hosoya T, Kawamoto H, Saka S. Solid/liquid and vapor-phase interactions between cellulose- and lignin-derived pyrolysis products[J]. Journal of Analytical and Applied Pyrolysis, 2009, 85(1/2): 237-246. |
20 | Worasuwannarak N, Sonobe T, Tanthapanichakoon W. Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique[J]. Journal of Analytical and Applied Pyrolysis, 2007, 78(2): 265-271. |
21 | Hosoya T, Kawamoto H, Saka S. Cellulose-hemicellulose and cellulose-lignin interactions in wood pyrolysis at gasification temperature[J]. Journal of Analytical and Applied Pyrolysis, 2007, 80(1): 118-125. |
22 | 惠贺龙, 李松庚, 宋文立. 生物质与废塑料催化热解制芳烃(Ⅰ): 协同作用的强化[J]. 化工学报, 2017, 68(10): 3832-3840. |
Hui H L, Li S G, Song W L. Aromatic hydrocarbon from catalytic pyrolysis of biomass and plastic wastes(Ⅰ): Enhancing synergistic effect[J]. CIESC Journal, 2017, 68(10): 3832-3840. | |
23 | Wu S L, Shen D K, Hu J, et al. Cellulose-hemicellulose interactions during fast pyrolysis with different temperatures and mixing methods[J]. Biomass and Bioenergy, 2016, 95: 55-63. |
24 | Wu S L, Shen D K, Hu J, et al. Cellulose-lignin interactions during fast pyrolysis with different temperatures and mixing methods[J]. Biomass and Bioenergy, 2016, 90: 209-217. |
25 | 范洪刚, 赵丹丹, 顾菁, 等. 生物质三组分二元混合热解特性研究[J]. 化工学报, 2021, 72(7): 3788-3800. |
Fan H G, Zhao D D, Gu J, et al. Study on the pyrolysis characteristics of binary mixture of biomass three-component[J]. CIESC Journal, 2021, 72(7): 3788-3800. | |
26 | Jin W, Shen D K, Liu Q, et al. Evaluation of the co-pyrolysis of lignin with plastic polymers by TG-FTIR and Py-GC/MS[J]. Polymer Degradation and Stability, 2016, 133: 65-74. |
27 | Li X Y, Zhang H F, Li J, et al. Improving the aromatic production in catalytic fast pyrolysis of cellulose by co-feeding low-density polyethylene[J]. Applied Catalysis A: General, 2013, 455: 114-121. |
28 | Zheng Y W, Wang J D, Liu C, et al. Enhancing the aromatic hydrocarbon yield from the catalytic copyrolysis of xylan and LDPE with a dual-catalytic-stage combined CaO/HZSM-5 catalyst[J]. Journal of the Energy Institute, 2020, 93(5): 1833-1847. |
29 | Ma Z Q, Custodis V, van Bokhoven J A. Selective deoxygenation of lignin during catalytic fast pyrolysis[J]. Catalysis Science & Technology, 2014, 4(3): 766. |
30 | Tang Z Y, Chen W, Hu J H, et al. Co-pyrolysis of microalgae with low-density polyethylene (LDPE) for deoxygenation and denitrification[J]. Bioresource Technology, 2020, 311: 123502. |
31 | Ma Z Q, Wang J H, Zhou H Z, et al. Relationship of thermal degradation behavior and chemical structure of lignin isolated from palm kernel shell under different process severities[J]. Fuel Processing Technology, 2018, 181: 142-156. |
32 | Wang K G, Kim K H, Brown R C. Catalytic pyrolysis of individual components of lignocellulosic biomass[J]. Green Chemistry, 2014, 16(2): 727-735. |
33 | Wu S L, Kang D, Zhang H Y, et al. The oxidation characteristics of furan derivatives and binary TPGME blends under engine relevant conditions[J]. Proceedings of the Combustion Institute, 2019, 37(4): 4635-4643. |
34 | Patwardhan P R, Satrio J A, Brown R C, et al. Product distribution from fast pyrolysis of glucose-based carbohydrates[J]. Journal of Analytical and Applied Pyrolysis, 2009, 86(2): 323-330. |
35 | Nowakowski D J, Woodbridge C R, Jones J M. Phosphorus catalysis in the pyrolysis behaviour of biomass[J]. Journal of Analytical and Applied Pyrolysis, 2008, 83(2): 197-204. |
36 | Nowakowski D J, Jones J M. Uncatalysed and potassium-catalysed pyrolysis of the cell-wall constituents of biomass and their model compounds[J]. Journal of Analytical and Applied Pyrolysis, 2008, 83(1): 12-25. |
37 | 仉利, 姚宗路, 赵立欣, 等. 生物质热化学转化提质及其催化剂研究进展[J]. 化工学报, 2020, 71(8): 3416-3427. |
Zhang L, Yao Z L, Zhao L X, et al. Research progress on thermochemical conversion of biomass to enhance quality and catalyst[J]. CIESC Journal, 2020, 71(8): 3416-3427. | |
38 | 蒋丽群, 郑安庆, 王小波, 等. 生物质定向快速热解制备左旋葡聚糖和芳烃的研究进展[J]. 新能源进展, 2018, 6(5): 402-409. |
Jiang L Q, Zheng A Q, Wang X B, et al. Progress of biomass fast pyrolysis to produce levoglucosan and aromatics[J]. Advances in New and Renewable Energy, 2018, 6(5): 402-409. | |
39 | Zhang X S, Lei H W, Zhu L, et al. Enhancement of jet fuel range alkanes from co-feeding of lignocellulosic biomass with plastics via tandem catalytic conversions[J]. Applied Energy, 2016, 173: 418-430. |
[1] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[2] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[3] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[4] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[5] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[6] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[7] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[8] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[9] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[10] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[11] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[12] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[13] | 王辰, 史秀锋, 武鲜凤, 魏方佳, 张昊虹, 车寅, 吴旭. 氧化还原法制备Mn3O4催化剂及其甲苯催化氧化性能与机理研究[J]. 化工学报, 2023, 74(6): 2447-2457. |
[14] | 李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
[15] | 周继鹏, 何文军, 李涛. 异形催化剂上乙烯催化氧化失活动力学反应工程计算[J]. 化工学报, 2023, 74(6): 2416-2426. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||