化工学报 ›› 2019, Vol. 70 ›› Issue (9): 3565-3572.DOI: 10.11949/0438-1157.20190255
徐颜军1(),徐泽海1,孟琴2,沈冲2,侯蕊1,张国亮1()
收稿日期:
2019-03-19
修回日期:
2019-05-24
出版日期:
2019-09-05
发布日期:
2019-09-05
通讯作者:
张国亮
作者简介:
徐颜军(1993—),女,硕士研究生,基金资助:
Yanjun XU1(),Zehai XU1,Qin MENG2,Chong SHEN2,Rui HOU1,Guoliang ZHANG1()
Received:
2019-03-19
Revised:
2019-05-24
Online:
2019-09-05
Published:
2019-09-05
Contact:
Guoliang ZHANG
摘要:
高性能石墨烯基复合膜的制备是目前国际研究热点,但是石墨烯基纳滤膜在脱盐中水通量较低,限制其在脱盐中的应用。采用聚多巴胺(PDA)改性聚砜(PSF)膜为基膜,将还原氧化石墨烯(rGO)和超薄氮化碳(uCN)纳米片通过真空抽滤法在基膜表面自组装制备新型还原氧化石墨烯/氮化碳复合纳滤膜。通过场发射扫描电子显微镜、透射电子显微镜、X 射线衍射仪、傅里叶变换红外光谱仪和X射线光电子能谱仪等研究uCN添加对膜结构和形貌的影响,并考察不同uCN添加比例、rGO用量及压力复合纳滤膜性能变化规律。结果显示当在100 mg·L-1的rGO中添加uCN为20 mg·L-1时所制备的rGO/uCN复合纳滤膜不仅保持良好盐离子截留率(对Na2SO4截留率85.86%,对NaCl截留率30.17%),且水渗透系数是rGO膜的2.15倍(88.50 L·m-2·h-1·MPa-1)。
中图分类号:
徐颜军, 徐泽海, 孟琴, 沈冲, 侯蕊, 张国亮. 新型还原氧化石墨烯/氮化碳复合纳滤膜制备及其性能[J]. 化工学报, 2019, 70(9): 3565-3572.
Yanjun XU, Zehai XU, Qin MENG, Chong SHEN, Rui HOU, Guoliang ZHANG. Preparation and performance of novel rGO/uCN composite nanofiltration membrane[J]. CIESC Journal, 2019, 70(9): 3565-3572.
Group | Membranes |
---|---|
N0 | rGO NF membrane |
N1 | 10 mg·L-1 uCN-intercalated rGO/uCN coposite NF membrane |
N2 | 12.5 mg·L-1 uCN-intercalated rGO/uCN coposite NF membrane |
N3 | 20 mg·L-1 uCN-intercalated rGO/uCN coposite NF membrane |
N4 | 25 mg·L-1 uCN-intercalated rGO/uCN coposite NF membrane |
表1 不同膜种类
Table 1 Different types of membrane
Group | Membranes |
---|---|
N0 | rGO NF membrane |
N1 | 10 mg·L-1 uCN-intercalated rGO/uCN coposite NF membrane |
N2 | 12.5 mg·L-1 uCN-intercalated rGO/uCN coposite NF membrane |
N3 | 20 mg·L-1 uCN-intercalated rGO/uCN coposite NF membrane |
N4 | 25 mg·L-1 uCN-intercalated rGO/uCN coposite NF membrane |
1 | Hilal N , Al-Zoubi H , Darwish N A , et al . A comprehensive review of nanofiltration membranes: treatment, pretreatment, modelling, and atomic force microscopy[J]. Desalination, 2004, 170(3): 281-308. |
2 | 张国亮 . 高硬度水质下纳滤系统的运行状态及分析[J]. 膜科学与技术, 2000, 20(2): 43-48. |
Zhang G L . Studies on operating characteristics of NF system in high hardness water treatment[J]. Membrane Science and Technology, 2000, 20(2): 43-48. | |
3 | 宋跃飞, 赵果, 李铁梅, 等 . 进水水质对纳滤膜苦咸水软化的分离性能[J]. 化工学报, 2017, 68(8): 3133-3140. |
Song Y F , Zhao G , Li T M , et al . Influence of feedwater quality on nanofiltration membrane softening efficiencies for brackish water in long-term operation[J]. CIESC Journal, 2017, 68(8): 3133-3140. | |
4 | Liu F N , Zhang G , Meng Q , et al . Performance of nanofiltration and reverse osmosis membranes in metal effluent treatment[J]. Chinese Journal of Chemical Engineering, 2008, 16(3): 441-445. |
5 | 李洪懿, 翟丁, 周勇, 等 . 纳米聚苯胺改性聚哌嗪酰胺纳滤膜的制备[J]. 化工学报, 2015, 66(1): 142-148. |
Li H Y , Zhai D , Zhou Y , et al . Polyamide composite NF membrane modified with polyaniline nanoparticles[J]. CIESC Journal, 2015, 66(1): 142-148. | |
6 | Zhu J Y , Hou J W , Uliana A , et al . The rapid emergence of two-dimensional nanomaterials for high-performance separation membranes[J]. Journal of Materials Chemistry A, 2018, 6(9): 3773-3792. |
7 | Mi B X . Graphene oxide membranes for ionic and molecular sieving[J]. Science, 2014, 343(6172): 740-742. |
8 | Li W B , Zhang Y F , Su P C , et al . Metal-organic framework channelled graphene composite membranes for H2/CO2 separation[J]. Journal of Materials Chemistry A, 2016, 4(48): 18747-18752. |
9 | 高克, 许中煌, 洪昱斌, 等 . 氧化石墨烯-陶瓷复合纳滤膜的层层自组装制备及其性能[J]. 化工学报, 2017, 68(5): 2177-2185. |
Gao K , Xu Z H , Hong Y B , et al . Layer-by-layer self-assembly preparation and performance of GO-ceramics composite nanofiltration membrane[J]. CIESC Journal, 2017, 68(5): 2177-2185. | |
10 | Choi W , Choi J , Bang J , et al . Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications[J]. ACS Applied Materials & Interfaces, 2013, 5(23): 12510-12519. |
11 | Zhang G L , Zhou M , Xu Z H , et al . Guanidyl-functionalized graphene/polysulfone mixed matrix ultrafiltration membrane with superior permselective, antifouling and antibacterial properties for water treatment[J]. Journal of Colloid and Interface Science, 2019, 540: 295-305. |
12 | Li W B , Zhang Y F , Xu Z H , et al . Self-assembled graphene oxide microcapsules with adjustable permeability and yolk–shell superstructures derived from atomized droplets[J]. Chemical Communications, 2014, 50(100): 15867-15869. |
13 | Han Y , Xu Z , Gao C . Ultrathin graphene nanofiltration membrane for water purification[J]. Advanced Functional Materials, 2013, 23(29): 3693-3700. |
14 | Wang J , Zhang P , Liang B , et al . Graphene oxide as effective MParier on a porous nanofibrous membrane for water treatment[J]. ACS Applied Materials & Interfaces, 2016, 8(9): 6211-6218. |
15 | Wang J L , Gao X L , Wang J , et al . O-(carboxymethyl)-chitosan nanofiltration membrane surface functionalized with graphene oxide nanosheets for enhanced desalting properties[J]. ACS Applied Materials & Interfaces, 2015, 7(7): 4381-4389. |
16 | Meng N , Zhao W , Shamsaei E , et al . A low-pressure GO nanofiltration membrane crosslinked via ethylenediamine[J]. Journal of Membrane Science, 2018, 548: 363-371. |
17 | Jia Z , Wang Y . Covalently crosslinked graphene oxide membranes by esterification reactions for ions separation[J]. Journal of Materials Chemistry A, 2015, 3(8): 4405-4412. |
18 | Han Y , Jiang Y , Gao C . High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes[J]. ACS Applied Materials & Interfaces, 2015, 7(15): 8147-8155. |
19 | Zhang P , Gong J L , Zeng G M , et al . Novel “loose” GO/MoS2 composites membranes with enhanced permeability for effective salts and dyes rejection at low pressure[J]. Journal of Membrane Science, 2019, 574: 112-123. |
20 | Chen X , Qiu M , Ding H , et al . Reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification[J]. Nanoscale, 2016, 8(10): 5696-5705. |
21 | Zhang M , Guan K , Shen J , et al . Nanoparticles@rGO membrane enabling highly-enhanced water permeability and structural stability with preserved selectivity[J]. AIChE Journal, 2017, 63(11): 5054-5063. |
22 | Cao K T , Jiang Z Y , Zhang X S , et al . Highly water-selective hybrid membrane by incorporating g-C3N4 nanosheets into polymer matrix[J]. Journal of Membrane Science, 2015, 490: 72-83. |
23 | Wang Y , Li L , Wei Y , et al . Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self-supporting spacers[J]. Angewandte Chemie International Edition, 2017, 56(31): 8974-8980. |
24 | Gao X , Li Y , Yang X , et al . Highly permeable and antifouling reverse osmosis membranes with acidified graphitic carbon nitride nanosheets as nanofillers[J]. Journal of Materials Chemistry A, 2017, 5(37): 19875-19883. |
25 | Wang Y , Liu L , Xue J , et al . Enhanced water flux through graphitic carbon nitride nanosheets membrane by incorporating polyacrylic acid[J]. AIChE Journal, 2018, 64(11): 2181-2188. |
26 | Aleksandrzak M , Kukulka W , Mijowska E . Graphitic carbon nitride/graphene oxide/reduced graphene oxide nanocomposites for photoluminescence and photocatalysis[J]. Applied Surface Science, 2016, 398: 56-62. |
27 | Xu Z H , Li W B , Zhang Y F , et al . Facile synthesis of mesoporous reduced graphene oxide microspheres with well-distributed Fe2O3 nanoparticles for photochemical catalysis[J]. Industrial & Engineering Chemistry Research, 2016, 55(40): 10591-10599. |
28 | Yang P , Ou H , Fang Y , et al . A facile steam reforming strategy to delaminate layered carbon nitride semiconductors for photoredox catalysis[J]. Angewandte Chemie International Edition, 2017, 129(14): 4050-4054. |
29 | Hu M , Mi B . Enabling graphene oxide nanosheets as water separation membranes[J]. Environmental Science & Technology, 2013, 47(8): 3715-3723. |
30 | Martin D J , Qiu K , Shevlin S A , et al . Highly efficient photocatalytic H2 evolution from water using visible light and structure-controlled graphitic carbon nitride[J]. Angewandte Chemie International Edition, 2015, 53(35): 9240-9245. |
31 | Zhao J , Zhu Y , Pan F , et al . Fabricating graphene oxide-based ultrathin hybrid membrane for pervaporation dehydration via layer-by-layer self-assembly driven by multiple interactions[J]. Journal of Membrane Science, 2015, 487: 162-172. |
32 | Zhu B H , Xia P F , Ho W K , et al . Isoelectric point and adsorption activity of porous g-C3N4 [J]. Applied Surface Science, 2015, 344: 188-195. |
33 | Blanton T N , Majumdar D . X-ray diffraction characterization of polymer intercalated graphite oxide[J]. Powder Diffraction, 2012, 27(2): 104-107. |
34 | Peeters J M M , Boom J P , Mulder M H V , et al . Retention measurements of nanofiltration membranes with electrolyte solutions[J]. Journal of Membrane Science, 1998, 145(2): 199-209. |
35 | Schaep J , Bruggen B V D , Vandecasteele C , et al . Influence of ion size and charge in nanofiltration[J]. Separation and Purification Technology, 1998, 14(1/2/3): 155-162. |
36 | Huang H , Mao Y , Ying Y , et al . Salt concentration, pH and pressure controlled separation of small molecules through lamellar graphene oxide membranes[J]. Chemical Communications, 2013, 49(53): 5963-5965. |
[1] | 陈朝光, 贾玉香, 汪锰. 以低浓度废酸驱动中和渗析脱盐的模拟与验证[J]. 化工学报, 2023, 74(6): 2486-2494. |
[2] | 顾浩, 张福建, 刘珍, 周文轩, 张鹏, 张忠强. 力电耦合作用下多孔石墨烯膜时间维度的脱盐性能及机理研究[J]. 化工学报, 2023, 74(5): 2067-2074. |
[3] | 吕阳光, 左培培, 杨正金, 徐铜文. 三嗪框架聚合物膜用于有机纳滤甲醇/正己烷分离[J]. 化工学报, 2023, 74(4): 1598-1606. |
[4] | 闫军营, 王皝莹, 李瑞瑞, 符蓉, 蒋晨啸, 汪耀明, 徐铜文. 选择性电渗析:机遇与挑战[J]. 化工学报, 2023, 74(1): 224-236. |
[5] | 黄陆月, 刘畅, 许勇毅, 邢浩若, 王峰, 马双忱. CDI二维浓度传质模型的建立以及实验验证[J]. 化工学报, 2022, 73(7): 2933-2943. |
[6] | 周国莉, 韩项珂, 武文佳, 王景涛, 张毛娃, 李凤丽. 异质结构g-C3N4@AM层状膜构筑及纳滤性能研究[J]. 化工学报, 2022, 73(2): 941-950. |
[7] | 张后虎, 吴晓莉, 陈冲冲, 陈静静, 王景涛. CD-MOF二维层状膜制备及混合溶剂精准分离研究[J]. 化工学报, 2022, 73(10): 4539-4550. |
[8] | 郭中权, 邹湘, 毛维东, 孙邃, 马赛, 吕顺之, 刘雪菲, 王远. 矿井水脱盐过程中卷式反渗透膜性能的数值模拟研究[J]. 化工学报, 2021, 72(9): 4808-4815. |
[9] | 李燕, 王敏, 赵有璟, 王怀有, 杨红军, 祝增虎. 纳滤膜对高镁锂比盐湖卤水镁锂分离性能研究[J]. 化工学报, 2021, 72(6): 3130-3139. |
[10] | 刘嘉玮, 郝雨峰, 苏延磊. 石墨烯量子点纳滤膜的仿生修饰及稳定性研究[J]. 化工学报, 2021, 72(6): 3390-3398. |
[11] | 冉瑾,黄强,艾新宇,吴玉莹,张朋朋,窦焰. Zn-BTC/MoS2复合二维膜构筑及有机溶剂纳滤性能研究[J]. 化工学报, 2021, 72(4): 2148-2155. |
[12] | 张锐, 邵琦, 张华宇, 金泽龙, 张小亮. 硼掺杂二氧化硅杂化膜的制备及渗透汽化脱盐性能[J]. 化工学报, 2021, 72(4): 2317-2327. |
[13] | 陆至彬, 谢星, 鲁思达, 何畅, 张冰剑, 陈清林. 基于代理模型的含盐废水多级纳滤系统的过程优化设计[J]. 化工学报, 2021, 72(3): 1400-1408. |
[14] | 杨丰瑞, 王志, 燕方正, 韩向磊, 王纪孝. 纳滤用于一价/二价无机盐溶液分离研究进展[J]. 化工学报, 2021, 72(2): 799-813. |
[15] | 何鹏鹏, 赵颂, 毛晨岳, 王志, 王纪孝. 耐溶剂复合纳滤膜的研究进展[J]. 化工学报, 2021, 72(2): 727-747. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||