化工学报 ›› 2021, Vol. 72 ›› Issue (4): 2317-2327.doi: 10.11949/0438-1157.20201182

• 材料化学工程与纳米技术 • 上一篇    下一篇

硼掺杂二氧化硅杂化膜的制备及渗透汽化脱盐性能

张锐(),邵琦,张华宇,金泽龙,张小亮()   

  1. 江西师范大学化学化工学院,江西 南昌 330022
  • 收稿日期:2020-08-19 修回日期:2020-09-18 出版日期:2021-04-05 发布日期:2021-04-05
  • 通讯作者: 张小亮 E-mail:rzhang2018@126.com;xlzhang@jxnu.edu.cn
  • 作者简介:张锐(1996—),男,硕士研究生,rzhang2018@126.com
  • 基金资助:
    国家自然科学基金项目(21766011);江西省主要学科学术和技术带头人培养计划(20204BCJL22042)

Fabrication of boron-doped hybrid silica membranes for pervaporation desalination

ZHANG Rui(),SHAO Qi,ZHANG Huayu,JIN Zelong,ZHANG Xiaoliang()   

  1. College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
  • Received:2020-08-19 Revised:2020-09-18 Published:2021-04-05 Online:2021-04-05
  • Contact: ZHANG Xiaoliang E-mail:rzhang2018@126.com;xlzhang@jxnu.edu.cn

摘要:

以1,2-双(三乙氧基硅基)乙烷(BTESE)和硼酸为前体,通过溶胶-凝胶法制备了硼掺杂的二氧化硅(B-BTESE-SiO2)杂化膜。采用FTIR、XRD、XPS、TEM、SEM等系列表征手段对合成溶胶及膜的结构和形貌进行了分析,结果表明:硼元素成功掺杂进入SiO2骨架中,形成了水热稳定的B—O—Si键,能明显影响膜表面的微观结构、亲疏水性、膜孔径大小从而提高膜的脱盐性能和稳定性。当溶胶中的H3BO3/BTESE比为0.25时所优化制备SiO2膜的亲水性最强,脱盐过程中活化能最低,传质阻力最小,膜孔径约为0.61 nm,故表现出最佳的脱盐性能。在60℃以3.5%(质量) NaCl溶液为进料液时,该膜的水通量高达16.5 kg·m-2·h-1,盐截留率近乎100%,并且表现出优异的长时间稳定性(>168 h)和高浓度盐水溶液[4.2%~15.0%(质量) NaCl]脱盐性能,在海水淡化和高盐废水处理等领域具有潜在的应用前景。

关键词: 二氧化硅, 膜, 脱盐, 水热稳定性, 活化能, 高盐废水

Abstract:

Using 1, 2-bis(triethoxysilyl)ethane (BTESE) and boric acid as precursors, a boron-doped silica (B-BTESE- SiO2) hybrid membrane was successfully prepared by the sol-gel method. The boron element was confirmed to be successfully doped into silica frameworks during the sol-gel procedure by various characterizations of FTIR, XRD, XPS, TEM and SEM, which would form hydrothermally stable Si—O—B bonds. It could significantly influence membrane surface microstructure, hydrophilicity and pore size of B-BTESE-SiO2 hybrid membranes, and then improve their desalination performance and stability. The B-BTESE-SiO2 membranes prepared under the optimized condition of H3BO3/BTESE ratio as 0.25 in the sols, exhibited the strongest hydrophilicity, lowest mass transfer resistance (lowest activation energy during desalination process) and applicable pore size of 0.61 nm, thus demonstrating the highest desalination performance. The high water flux up to 16.5 kg·m-2·h-1 and NaCl rejection of nearly 100% were achieved for this SiO2 membrane towards 3.5%(mass) NaCl feed solution at 60℃. Moreover, this membrane showed excellent long-term stability (>168 h) and desalination performance for high-salinity [4.2%—15.0%(mass) NaCl] solutions, which had promising potential applications in seawater desalination and high-salinity wastewater treatment.

Key words: silica, membrane, desalination, hydrothermal stability, activation energy, high-salinity wastewater

中图分类号: 

  • TQ 028.8

图1

B-BTESE-SiO2溶胶合成示意图"

图2

B-BTESE-SiO2溶胶的粒径分布"

图3

B-BTESE-SiO2凝胶粉末的红外光谱"

图4

B-BTESE-0.25 SiO2凝胶粉末的XPS谱图"

图5

B-BTESE-SiO2凝胶粉末的XRD谱图"

图6

B-BTESE-0.25 SiO2凝胶粉末的TEM图和SAED图(插图)"

图7

B-BTESE-SiO2杂化膜的表面和截面SEM图"

图8

硼掺杂量对SiO2杂化膜的脱盐性能的影响"

图9

B-BTESE-SiO2杂化膜的水接触角"

图10

B-BTESE-SiO2杂化膜的渗透通量[(a),(b)]和渗透率[(c)、(d)]与温度的Arrhenius关系曲线"

表1

B-BTESE-SiO2杂化膜渗透汽化脱盐过程的活化能"

MembraneEj/(kJ·mol-1)Ep/(kJ·mol-1)(Ej-Ep)/(kJ·mol-1)
pure H2O3.5%(质量) NaClpure H2O3.5%(质量) NaClpure H2O3.5%(质量) NaCl
BTESE16.57±2.1818.23±1.85-26.64±2.10-24.99±1.8643.2143.22
B-BTESE-0.0513.80±1.5717.40±1.74-29.42±1.58-25.82±1.7743.2243.22
B-BTESE-0.1312.83±1.6117.04±1.90-30.39±1.38-26.18±1.4143.2243.22
B-BTESE-0.2510.71±1.5414.27±1.40-32.50±1.38-28.95±1.4143.2143.22
B-BTESE-0.5019.44±0.6419.00±1.10-23.73±0.35-24.22±1.3943.1743.22
B-BTESE-1.0019.98±2.8020.02±1.80-23.24±2.75-23.20±1.7443.2243.22

图11

B-BTESE-0.25 SiO2粉末的N2吸附-脱附曲线及其孔径分布"

图12

B-BTESE-0.25杂化膜在60℃时于不同浓度NaCl溶液中的脱盐性能"

图13

BTESE和B-BTESE-0.25杂化膜的稳定性"

表2

SiO2膜渗透汽化脱盐性能比较"

Membranec(NaCl)/%(mass)T/℃J/(kg·m-2·h-1)P/(mol·m-2·s-1·Pa-1)Rej/%Ref.
PVA/SiO20.26020.616×10-699[30]
BTESEthy-SiO20.27014.27×10-699.6[31]
PVA/SiO23.56012.39.7×10-699.9[32]
ES40-SiO23.56017.814.1×10-699[33]
Co-TEOS-SiO23.56011.39.7×10-699.9[27]
Ni/TEOS-SiO23.5252.523.9×10-697[34]
La25Y75-BTESE-SiO23.56015.612.4×10-699.9[10]
P123/TEOS-SiO23.56086.9×10-699.9[35]
CTAB/SiO24252.612.9×10-699.9[36]
P123/TEOS-TEVS-SiO215609.28.7×10-698.6[37]
B-BTESE-SiO20.36024.519×10-6100本工作
B-BTESE-SiO23.56016.513.1×10-6100本工作
B-BTESE-SiO215609.68.4×10-699.9本工作
1 Werber J R, Osuji C O, Elimelech M. Materials for next-generation desalination and water purification membranes[J]. Nature Reviews Materials, 2016, 1: 16018.
2 Lin S H. Energy efficiency of desalination: fundamental insights from intuitive interpretation[J]. Environmental Science & Technology, 2020, 54(1): 76-84.
3 Yang Z, Ma X H, Tang C Y. Recent development of novel membranes for desalination[J]. Desalination, 2018, 434: 37-59.
4 高从堦, 周勇, 刘立芬. 反渗透海水淡化技术现状和展望[J]. 海洋技术学报, 2016, 35(1): 1-14.
Gao C J, Zhou Y, Liu L F. Recent development and prospect of seawater reverse osmosis desalination technology[J]. Journal of Ocean Technology, 2016, 35(1): 1-14.
5 葛亮, 伍斌, 王鑫, 等. MOFs分离膜在水系分离中的应用[J]. 化工学报, 2019, 70(10): 3748-3763.
Ge L, Wu B, Wang X, et al. Application in water system separation of MOFs separation membranes[J]. CIESC Journal, 2019, 70(10): 3748-3763.
6 Wang Q Z, Li N, Bolto B, et al. Desalination by pervaporation: a review[J]. Desalination, 2016, 387: 46-60.
7 Selim A, Toth A J, Haaz E, et al. Preparation and characterization of PVA/GA/Laponite membranes to enhance pervaporation desalination performance[J]. Separation and Purification Technology, 2019, 221: 201-210.
8 Cao Z S, Zeng S X, Xu Z, et al. Ultrathin ZSM-5 zeolite nanosheet laminated membrane for high-flux desalination of concentrated brines[J]. Science Advances, 2018, 4(11): eaau8634.
9 Cho C H, Oh K Y, Kim S K, et al. Pervaporative seawater desalination using NaA zeolite membrane: mechanisms of high water flux and high salt rejection[J]. Journal of Membrane Science, 2011, 371(1/2): 226-238.
10 Zhang H Y, Wen J L, Shao Q, et al. Fabrication of La/Y-codoped microporous organosilica membranes for high-performance pervaporation desalination[J]. Journal of Membrane Science, 2019, 584: 353-363.
11 Qian X W, Li N, Wang Q Z, et al. Chitosan/graphene oxide mixed matrix membrane with enhanced water permeability for high-salinity water desalination by pervaporation[J]. Desalination, 2018, 438: 83-96.
12 Liu G Z, Shen J, Liu Q, et al. Ultrathin two-dimensional MXene membrane for pervaporation desalination[J]. Journal of Membrane Science, 2018, 548: 548-558.
13 Kanezashi M, Yada K, Yoshioka T, et al. Design of silica networks for development of highly permeable hydrogen separation membranes with hydrothermal stability[J]. Journal of the American Chemical Society, 2009, 131(2): 414-415.
14 Elma M, Yacou C, Wang D K, et al. Microporous silica based membranes for desalination[J]. Water, 2012, 4(3): 629-649.
15 Wijaya S, Duke M C, Diniz da Costa J C. Carbonised template silica membranes for desalination[J]. Desalination, 2009, 236(1/2/3): 291-298.
16 Yamamoto K, Muragishi H, Mizumo T, et al. Diethylenedioxane-bridged microporous organosilica membrane for gas and water separation[J]. Separation and Purification Technology, 2018, 207: 370-376.
17 Xu R, Ibrahim S M, Kanezashi M, et al. New insights into the microstructure-separation properties of organosilica membranes with ethane, ethylene, and acetylene bridges[J]. ACS Applied Materials & Interfaces, 2014, 6(12): 9357-9364.
18 Qureshi H F, Besselink R, Elshof J E, et al. Doped microporous hybrid silica membranes for gas separation[J]. Journal of Sol-Gel Science and Technology, 2015, 75(1): 180-188.
19 Zheng F T, Yamamoto K, Kanezashi M, et al. Preparation of bridged silica RO membranes from copolymerization of bis(triethoxysilyl)ethene/(hydroxymethyl)triethoxysilane. Effects of ethenylene-bridge enhancing water permeability[J]. Journal of Membrane Science, 2018, 546: 173-178.
20 Castricum H L, Kreiter R, van Veen H M, et al. High-performance hybrid pervaporation membranes with superior hydrothermal and acid stability[J]. Journal of Membrane Science, 2008, 324(1/2): 111-118.
21 Song H T, Wei Y B, Qi H. Tailoring pore structures to improve the permselectivity of organosilica membranes by tuning calcination parameters[J]. Journal of Materials Chemistry A, 2017, 5(47): 24657-24666.
22 Niimi T, Nagasawa H, Kanezashi M, et al. Preparation of BTESE-derived organosilica membranes for catalytic membrane reactors of methylcyclohexane dehydrogenation[J]. Journal of Membrane Science, 2014, 455: 375-383.
23 Qi H, Han J, Xu N P. Effect of calcination temperature on carbon dioxide separation properties of a novel microporous hybrid silica membrane[J]. Journal of Membrane Science, 2011, 382(1/2): 231-237.
24 Zhang Q H, Gu J L, Chen G Q, et al. Durable flame retardant finish for silk fabric using boron hybrid silica sol[J]. Applied Surface Science, 2016, 387: 446-453.
25 Sorarù G D, Dallabona N, Gervais C, et al. Organically modified SiO2-B2O3 gels displaying a high content of borosiloxane (B—O—Si) bonds[J]. Chemistry of Materials, 1999, 11(4): 910-919.
26 Ivanova Y, Vueva Y, Fernandes M H F V. Si—O—C—B amorphous materials from organic-inorganic hybrid precursors[J]. Journal of the University of Chemical Technology and Metallurgy, 2006, 41(4): 417-422.
27 Elma M, Wang D K, Yacou C, et al. High performance interlayer-free mesoporous cobalt oxide silica membranes for desalination applications[J]. Desalination, 2015, 365: 308-315.
28 Wu D H, Gao A R, Zhao H T, et al. Pervaporative desalination of high-salinity water[J]. Chemical Engineering Research and Design, 2018, 136: 154-164.
29 Halakoo E, Feng X S. Layer-by-layer assembly of polyethyleneimine/graphene oxide membranes for desalination of high-salinity water via pervaporation[J]. Separation and Purification Technology, 2020, 234: 116077.
30 Chaudhri S G, Chaudhari J C, Singh P S. Fabrication of efficient pervaporation desalination membrane by reinforcement of poly(vinyl alcohol)-silica film on porous polysulfone hollow fiber[J]. Journal of Applied Polymer Science, 2018, 135(3): 45718.
31 Xu R, Lin P, Zhang Q, et al. Development of ethenylene-bridged organosilica membranes for desalination applications[J]. Industrial & Engineering Chemistry Research, 2016, 55(7): 2183-2190.
32 Reino Olegário da Silva D A, Bosmuler Zuge L C, de Paula Scheer A. Preparation and characterization of a novel green silica/PVA membrane for water desalination by pervaporation[J]. Separation and Purification Technology, 2020, 247: 116852.
33 Wang S N, Wang D K, Motuzas J, et al. Rapid thermal treatment of interlayer-free ethyl silicate 40 derived membranes for desalination[J]. Journal of Membrane Science, 2016, 516: 94-103.
34 Darmawan A, Karlina L, Astuti Y, et al. Structural evolution of nickel oxide silica sol-gel for the preparation of interlayer-free membranes[J]. Journal of Non-Crystalline Solids, 2016, 447: 9-15.
35 Elma M, Wang D K, Yacou C, et al. Interlayer-free P123 carbonised template silica membranes for desalination with reduced salt concentration polarisation[J]. Journal of Membrane Science, 2015, 475: 376-383.
36 Singh P S, Chaudhri S G, Kansara A M, et al. Cetyltrimethylammonium bromide-silica membrane for seawater desalination through pervaporation[J]. Bulletin of Materials Science, 2015, 38(2): 565-572.
37 Yang H, Elma M, Wang D K, et al. Interlayer-free hybrid carbon-silica membranes for processing brackish to brine salt solutions by pervaporation[J]. Journal of Membrane Science, 2017, 523: 197-204.
[1] 刘洪超, 陈苏航, 段先力, 吴凡, 徐小飞, 宋先雨, 赵双良, 刘洪来. Janus石墨烯量子点在生物膜中的输运行为:分子动力学模拟[J]. 化工学报, 2022, 73(7): 2835-2843.
[2] 罗佳, 吴双应, 肖兰, 周世耀, 陈志莉. 撞击速度对连续液滴撞击热圆柱壁面局部传热特性影响的实验[J]. 化工学报, 2022, 73(7): 2944-2951.
[3] 孙国鑫, 苟萌萱, 周诚, 常佩, 贺高红, 姜晓滨. 高浓度Na+//NO3-, SO42--H2O溶液的膜蒸馏结晶耦合过程调控[J]. 化工学报, 2022, 73(7): 3078-3089.
[4] 黄陆月, 刘畅, 许勇毅, 邢浩若, 王峰, 马双忱. CDI二维浓度传质模型的建立以及实验验证[J]. 化工学报, 2022, 73(7): 2933-2943.
[5] 王立维, 王娟娟, 王永洪, 张新儒, 李晋平. 聚乙烯胺/Cu3(BTC)2-MMT-NH2混合基质膜的制备及气体传递性能[J]. 化工学报, 2022, 73(7): 3068-3077.
[6] 于喆淼, 王志, 生梦龙, 邢广宇, 王纪孝. 界面聚合法制备用于脱氮提纯CH4的N2优先渗透ZIF-90/聚酰胺混合基质膜[J]. 化工学报, 2022, 73(7): 3273-3286.
[7] 张文静, 李静, 魏子栋. 介尺度视角下的电催化:从界面、隔膜到多孔电极[J]. 化工学报, 2022, 73(6): 2289-2305.
[8] 李智超, 郑瑜, 张润楠, 姜忠义. 高通量抗污染氧化石墨烯膜研究进展[J]. 化工学报, 2022, 73(6): 2370-2380.
[9] 朱嫣然, 葛亮, 李兴亚, 徐铜文. 三相结构离子交换膜的构筑及应用研究[J]. 化工学报, 2022, 73(6): 2397-2414.
[10] 王江丽, 薛敏, 赵承科, 岳凤霞. 木质素分级对其应用性能的影响[J]. 化工学报, 2022, 73(5): 1894-1907.
[11] 刘鑫, 潘阳, 刘公平, 方静, 李春利, 李浩. 渗透汽化-隔壁塔精馏耦合初步分离费托合成水的过程研究[J]. 化工学报, 2022, 73(5): 2020-2030.
[12] 徐洁, 俞树荣, 丁雪兴, 蒋海涛, 丁俊华. 基于波箔片变形的浮动式箔片气膜密封性能分析[J]. 化工学报, 2022, 73(5): 2083-2093.
[13] 季超, 刘炜, 漆虹. 基于空冷的疏水陶瓷膜冷凝器用于烟气脱湿过程强化的实验研究[J]. 化工学报, 2022, 73(5): 2174-2182.
[14] 叶枫, 李刚, 付鑫, 郎雪梅, 王燕鸿, 王盛龙, 张建利, 樊栓狮. 多孔膜反应器中丙烷催化脱氢制丙烯的模拟研究[J]. 化工学报, 2022, 73(5): 2008-2019.
[15] 王学良, 刘美红, 熊忠汾, 李鑫. 考虑表面粗糙度的柔性箔柱面气膜密封紊流特性分析[J]. 化工学报, 2022, 73(4): 1683-1694.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!