1 |
Fritzmann C, Löwenberg J, Wintgens T, et al. State-of-the-art of reverse osmosis desalination[J]. Desalination, 2007, 216(1/2/3): 1-76.
|
2 |
Qasim M, Badrelzaman M, Darwish N N, et al. Reverse osmosis desalination: a state-of-the-art review[J]. Desalination, 2019, 459: 59-104.
|
3 |
Lin W C, Li M C, Wang Y H, et al. Quantifying the dynamic evolution of organic, inorganic and biological synergistic fouling during nanofiltration using statistical approaches[J]. Environment International, 2019, 133: 105201.
|
4 |
Rice D, Barrios A C, Xiao Z W, et al. Development of anti-biofouling feed spacers to improve performance of reverse osmosis modules[J]. Water Research, 2018, 145: 599-607.
|
5 |
毛维东, 周如禄, 郭中权. 煤矿矿井水零排放处理技术与应用[J]. 煤炭科学技术, 2017, 45(11): 205-210.
|
|
Mao W D, Zhou R L, Guo Z Q. Zero liquid discharge treatment technology and application for coal mine drainage water[J]. Coal Science and Technology, 2017, 45(11): 205-210.
|
6 |
Fimbres-Weihs G A, Wiley D E. Numerical study of mass transfer in three-dimensional spacer-filled narrow channels with steady flow[J]. Journal of Membrane Science, 2007, 306(1/2): 228-243.
|
7 |
Li F, Meindersma W, de Haan A B, et al. Optimization of commercial net spacers in spiral wound membrane modules[J]. Journal of Membrane Science, 2002, 208(1/2): 289-302.
|
8 |
Shakaib M, Hasani S M F, Mahmood M. Study on the effects of spacer geometry in membrane feed channels using three-dimensional computational flow modeling[J]. Journal of Membrane Science, 2007, 297(1/2): 74-89.
|
9 |
Vrouwenvelder J S, Picioreanu C, Kruithof J C, et al. Biofouling in spiral wound membrane systems: three-dimensional CFD model based evaluation of experimental data[J]. Journal of Membrane Science, 2010, 346(1): 71-85.
|
10 |
Picioreanu C, Vrouwenvelder J S, van Loosdrecht M C M. Three-dimensional modeling of biofouling and fluid dynamics in feed spacer channels of membrane devices[J]. Journal of Membrane Science, 2009, 345(1/2): 340-354.
|
11 |
Ahmad A L, Lau K K, Bakar M Z A, et al. Integrated CFD simulation of concentration polarization in narrow membrane channel[J]. Computers & Chemical Engineering, 2005, 29(10): 2087-2095.
|
12 |
Gu B, Xu X Y, Adjiman C S. A predictive model for spiral wound reverse osmosis membrane modules: the effect of winding geometry and accurate geometric details[J]. Computers & Chemical Engineering, 2017, 96: 248-265.
|
13 |
Schwinge J, Neal P R, Wiley D E, et al. Spiral wound modules and spacers: review and analysis[J]. Journal of Membrane Science, 2004, 242(1/2): 129-153.
|
14 |
Bucs S S, Valladares Linares R, Marston J O, et al. Experimental and numerical characterization of the water flow in spacer-filled channels of spiral-wound membranes[J]. Water Research, 2015, 87: 299-310.
|
15 |
Liang Y Y, Chapman M B, Fimbres Weihs G A, et al. CFD modelling of electro-osmotic permeate flux enhancement on the feed side of a membrane module[J]. Journal of Membrane Science, 2014, 470: 378-388.
|
16 |
Wiley D E, Fletcher D F. Techniques for computational fluid dynamics modelling of flow in membrane channels[J]. Journal of Membrane Science, 2003, 211(1): 127-137.
|
17 |
Pitzer K S, Mayorga G. Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent[J]. The Journal of Physical Chemistry, 1973, 77(19): 2300-2308.
|
18 |
Pitzer K S, Mayorga G. Thermodynamics of electrolytes. III. Activity and osmotic coefficients for 2-2 electrolytes[J]. Journal of Solution Chemistry, 1974, 3(7): 539-546.
|
19 |
Wolfe T, Metcalfe P, Osmotic pressure calculation using Pitzer equation modeling[C]//IDA World Congress on Desalination and Water Reuse. Perth: 2011.
|
20 |
胡中爱, 吴红英. 反渗透过程的浓度极化及其传质系数测定[J]. 化工学报, 2000, 51(5): 695-698.
|
|
Hu Z A, Wu H Y. Concentration polarization and measurement of mass transfer coefficient for reverse osmosis[J]. Journal of Chemical Industry and Engineering (China), 2000, 51(5): 695-698.
|
21 |
王亚琴, 徐铜文, 王焕庭. 正渗透原理及分离传质过程浅析[J]. 化工学报, 2013, 64(1): 252-260.
|
|
Wang Y Q, Xu T W, Wang H T. Forward osmosis membrane process and its mass transport mechanisms[J]. CIESC Journal, 2013, 64(1): 252-260.
|
22 |
Guggenheim E A. The diffusion coefficient of sodium chloride[J]. Transactions of the Faraday Society, 1954, 50: 1048.
|
23 |
Applin K R, Lasaga A C. The determination of SO42-, NaSO4-, and MgSO40 tracer diffusion coefficients and their application to diagenetic flux calculations[J]. Geochimica et Cosmochimica Acta, 1984, 48(10): 2151-2162.
|
24 |
Christoffersen J, Christoffersen M R. The kinetics of dissolution of calcium sulphate dihydrate in water[J]. Journal of Crystal Growth, 1976, 35(1): 79-88.
|
25 |
Cao Z, Wiley D E, Fane A G. CFD simulations of net-type turbulence promoters in a narrow channel[J]. Journal of Membrane Science, 2001, 185(2): 157-176.
|
26 |
Santos J L C, Geraldes V, Velizarov S, et al. Investigation of flow patterns and mass transfer in membrane module channels filled with flow-aligned spacers using computational fluid dynamics (CFD)[J]. Journal of Membrane Science, 2007, 305(1/2): 103-117.
|
27 |
Koutsou C P, Yiantsios S G, Karabelas A J. A numerical and experimental study of mass transfer in spacer-filled channels: effects of spacer geometrical characteristics and Schmidt number[J]. Journal of Membrane Science, 2009, 326(1): 234-251.
|
28 |
Ishigami T, Matsuyama H. Numerical modeling of concentration polarization in spacer-filled channel with permeation across reverse osmosis membrane[J]. Industrial & Engineering Chemistry Research, 2015, 54(5): 1665-1674.
|
29 |
Li Y L, Tung K L, Lu M Y, et al. Mitigating the curvature effect of the spacer-filled channel in a spiral-wound membrane module[J]. Journal of Membrane Science, 2009, 329(1/2): 106-118.
|
30 |
Ranade V V, Kumar A. Comparison of flow structures in spacer-filled flat and annular channels[J]. Desalination, 2006, 191(1/2/3): 236-244.
|