化工学报 ›› 2022, Vol. 73 ›› Issue (7): 2933-2943.doi: 10.11949/0438-1157.20220033

• 流体力学与传递现象 • 上一篇    下一篇

CDI二维浓度传质模型的建立以及实验验证

黄陆月1(),刘畅1,许勇毅2,邢浩若1,王峰2,马双忱1()   

  1. 1.华北电力大学环境科学与工程系,河北 保定 071003
    2.中电华创电力技术研究有限公司,江苏 苏州 215123
  • 收稿日期:2022-01-07 修回日期:2022-05-18 出版日期:2022-07-05 发布日期:2022-08-01
  • 通讯作者: 马双忱 E-mail:1020010249@qq.com;msc1225@163.com
  • 作者简介:黄陆月(1997—),女,硕士研究生,1020010249@qq.com
  • 基金资助:
    国家重点研发计划项目(2018YF0604305-1)

Development of CDI two-dimensional concentration mass transfer model and experimental validation

Luyue HUANG1(),Chang LIU1,Yongyi XU2,Haoruo XING1,Feng WANG2,Shuangchen MA1()   

  1. 1.Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, Hebei, China
    2.China Power Hua Chuang Electricity Technology Research Company Ltd. , Suzhou 215123, Jiangsu, China
  • Received:2022-01-07 Revised:2022-05-18 Published:2022-07-05 Online:2022-08-01
  • Contact: Shuangchen MA E-mail:1020010249@qq.com;msc1225@163.com

摘要:

电容去离子技术(CDI)作为一种新兴的水处理脱盐技术,因其具有诸多优异性能而受到广泛关注。厘清CDI的传质机制是理论研究的焦点。通过对已有经验模型的分析,从沿流向方向和垂直流向方向两个方面,考虑了电场迁移以及传质扩散等因素,提出了一种新的CDI二维浓度传质模型,对CDI在除盐过程中的离子扩散及浓度分布规律进行模拟探究,根据实际实验结果对该模型进行实验验证及参数修正。结果表明,该二维模型可以较好地模拟CDI除盐过程。将该二维模型利用COMSOL软件进行模拟,观测CDI在除盐过程中的内部浓度变化。并针对存在问题提出合理化建议,为CDI技术的未来发展提供理论支撑。

关键词: 电容去离子, 电吸附, 二维模型, 脱盐, 实验验证

Abstract:

Capacitive deionization (CDI) is an emerging technology for water treatment and desalination, which has received much attention because of its excellent performance. To this end, a new two-dimensional concentration transfer model of CDI was proposed in this paper by analyzing the existing empirical models, which considers the electric field migration and mass transfer diffusion from both along and vertical flow directions. The ion diffusion and concentration distribution of CDI in the process of desalination were simulated and explored. According to the actual experimental results, the model is verified experimentally and its parameters are corrected. The results show that the two-dimensional model can simulate the CDI desalination process well. This two-dimensional model was simulated using COMSOL software to observe the internal concentration changes of CDI during the desalination process. And rationalization suggestions are made for the existing problems to provide theoretical support for the future development of CDI technology.

Key words: capacitive deionization, electro-adsorption, two-dimensional model, desalination, experimental validation

中图分类号: 

  • O 646

表1

传质模型优缺点对比"

名称模型优点缺点
Biesheuvel等的模型一维理论模型的预测与离子去除步骤的实验结果一致性很高离子解吸步骤的实验结果与模型不吻合,说明模型存在缺陷
Suss等的模型一维能预测随着时间的推移,浓度和电位在电极间隙和电极上的变化不适合用于预测确切的电池性能;忽略了表面传导和电渗流的影响
Perez等的传质模型一维很好地预测了低流速和高流速下溶液的脱盐率只适用于低浓度的溶液;使用了Nernst层近似
Hemmatifar等的模型二维模型结果与实验数据一致性较好;模型是充分模块化的假设恒定的微孔电容不够精确;忽略了系统是动态变化的

表2

参数设置"

R/PaT/Kd/mzFD/(m2/s)E/Vt1t2η/%
8.3142980.0051965001.48×10-91.20.6230.97100

图1

浓度随距离的变化"

图2

浓度随时间的变化"

图3

修正模型浓度随距离的变化关系"

图4

垂直方向浓度变化拟合曲线"

图5

模型与实验的对比"

图6

COMSOL模型结构"

图7

电场强度分布COMSOL模拟图"

图8

流线分布COMSOL模拟图"

图9

X方向的浓度分布COMSOL模拟图"

图10

Y方向浓度分布的COMSOL模拟图"

图11

XY方向浓度分布的COMSOL模拟图"

1 马双忱, 刘畅, 马岚, 等. 电吸附用于微污染水处理:技术选择、工艺原理、未来发展[J]. 化工进展, 2020, 39(7): 2841-2849.
Ma S C, Liu C, Ma L, et al. Electro-adsorption for micro-polluted water treatment: technology selection, process principle, future development[J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2841-2849.
2 Chen R, Sheehan T, Ng J L, et al. Capacitive deionization and electrosorption for heavy metal removal[J]. Environmental Science: Water Research & Technology, 2020, 6(2): 258-282.
3 Liang P, Ren Z J, Huang X. Capacitive deionization and electrosorption: from desalination to ion management[J]. Environmental Science: Water Research & Technology, 2020, 6(2): 241-242.
4 Xing W L, Liang J, Tang W W, et al. Perchlorate removal from brackish water by capacitive deionization: experimental and theoretical investigations[J]. Chemical Engineering Journal, 2019, 361: 209-218.
5 Liu C, Ma L, Xu Y Y, et al. Experimental and theoretical study of a new CDI device for the treatment of desulfurization wastewater[J]. Environmental Science and Pollution Research International, 2022, 29(1): 518-530.
6 Lee J, Jo K, Lee J, et al. Rocking-chair capacitive deionization for continuous brackish water desalination[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10815-10822.
7 Moustafa H M, Obaid M, Nassar M M, et al. Titanium dioxide-decorated rGO as an effective electrode for ultrahigh-performance capacitive deionization[J]. Separation and Purification Technology, 2020, 235: 116178.
8 Liu N L, Sun S H, Hou C H. Studying the electrosorption performance of activated carbon electrodes in batch-mode and single-pass capacitive deionization[J]. Separation and Purification Technology, 2019, 215: 403-409.
9 Suss M E, Porada S, Sun X, et al. Water desalination via capacitive deionization: what is it and what can we expect from it? [J]. Energy & Environmental Science, 2015, 8(8): 2296-2319.
10 Suss M E, Baumann T F, Bourcier W L, et al. Capacitive desalination with flow-through electrodes[J]. Energy & Environmental Science, 2012, 5(11):9511.
11 高晓丹, 李航, 田锐, 等. 利用基于Gouy-Chapman模型的离子有效电荷定量表征离子特异性效应[J]. 物理化学学报, 2014, 30(12): 2272-2282.
Gao X D, Li H, Tian R, et al. Quantitative characterization of specific ion effects using an effective charge number based on the gouy-chapman model[J]. Acta Physico-Chimica Sinica, 2014, 30(12): 2272-2282.
12 Porada S, Zhao R, van der Wal A, et al. Review on the science and technology of water desalination by capacitive deionization[J]. Progress in Materials Science, 2013, 58(8): 1388-1442.
13 Oldham K B. A Gouy-Chapman-Stern model of the double layer at a (metal)/(ionic liquid) interface[J]. Journal of Electroanalytical Chemistry, 2008, 613(2): 131-138.
14 Zhao R, Biesheuvel P M, Miedema H, et al. Charge efficiency: a functional tool to probe the double-layer structure inside of porous electrodes and application in the modeling of capacitive deionization[J]. The Journal of Physical Chemistry Letters, 2010, 1(1): 205-210.
15 Kondrat S, Wu P, Qiao R, et al. Accelerating charging dynamics in subnanometre pores [J]. Nature Materials, 2014, 13 (4): 387-393.
16 Biesheuvel P M, Porada S, Levi M, et al. Attractive forces in microporous carbon electrodes for capacitive deionization[J]. Journal of Solid State Electrochemistry, 2014, 18(5): 1365-1376.
17 Huang J S, Sumpter B, Meunier V. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes[J]. Chemistry - A European Journal, 2008, 14(22): 6614-6626.
18 Biesheuvel P M, Bazant M Z. Nonlinear dynamics of capacitive charging and desalination by porous electrodes[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2010, 81(3): 031502.
19 Biesheuvel P M, Zhao R, Porada S, et al. Theory of membrane capacitive deionization including the effect of the electrode pore space[J]. Journal of Colloid and Interface Science, 2011, 360(1): 239-248.
20 Biesheuvel P M, van Limpt B, van der Wal A. Dynamic adsorption/desorption process model for capacitive deionization[J]. The Journal of Physical Chemistry C, 2009, 113(14): 5636-5640.
21 Newman J, Tiedemann W. Porous-electrode theory with battery applications[J]. AIChE Journal, 1975, 21(1): 25-41.
22 Bazant M Z, Thornton K, Ajdari A. Diffuse-charge dynamics in electrochemical systems[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2004, 70(2): 021506.
23 Bouhadana Y, Avraham E, Soffer A, et al. Several basic and practical aspects related to electrochemical deionization of water[J]. AIChE Journal, 2010, 56(3): 779-789.
24 Perez C A R, Demirer O N, Clifton R L, et al. Macro analysis of the electro-adsorption process in low concentration NaCl solutions for water desalination applications[J]. Journal of the Electrochemical Society, 2013, 160(3): E13-E21.
25 Hemmatifar A, Stadermann M, Santiago J G. Two-dimensional porous electrode model for capacitive deionization[J]. The Journal of Physical Chemistry C, 2015, 119(44): 24681-24694.
26 Biesheuvel P M, Fu Y Q, Bazant M Z. Diffuse charge and Faradaic reactions in porous electrodes[J]. Physical Review E, 2011, 83(6): 061507.
27 Biesheuvel P M, Fu Y Q, Bazant M Z. Electrochemistry and capacitive charging of porous electrodes in asymmetric multicomponent electrolytes[J]. Russian Journal of Electrochemistry, 2012, 48(6): 580-592.
28 Zhao R, Biesheuvel P M, van der Wal A. Energy consumption and constant current operation in membrane capacitive deionization[J]. Energy & Environmental Science, 2012, 5(11): 9520-9527.
29 Suss M E, Biesheuvel P M, Baumann T F, et al. In situ spatially and temporally resolved measurements of salt concentration between charging porous electrodes for desalination by capacitive deionization[J]. Environmental Science & Technology, 2014, 48(3): 2008-2015.
30 Bard A J, Faulkner L R, White H S. Electrochemical Methods: Fundamentals and Applications[M]. New York: John Wiley & Sons, 2022.
31 Sousa P, Soares A, Monteiro E, et al. A CFD study of the hydrodynamics in a desalination membrane filled with spacers[J]. Desalination, 2014, 349: 22-30.
32 马岚. 电容去离子技术用于电厂循环冷却排污水脱盐实验研究[D]. 北京: 华北电力大学, 2021.
Ma L. Experimental study on the application of capacitive deionization technology in desalination of circulating cooling sewage in power plants[D]. Beijing: North China Electric Power University, 2021.
[1] 王刚, 车小平, 汪仕勇, 邱介山. 水溶性带电聚合物黏结剂修饰炭电极用于增强电容去离子性能[J]. 化工学报, 2022, 73(4): 1763-1771.
[2] 王祺, 房阔, 贺聪慧, 王凯军. 流动电极电容去离子技术综述:研究进展与未来挑战[J]. 化工学报, 2022, 73(3): 975-989.
[3] 张建伟, 安丰元, 董鑫, 冯颖. 基于阶跃射流的撞击流反应器流场动态特性分析[J]. 化工学报, 2022, 73(2): 622-633.
[4] 宋哲, 许波, 陈振乾. 管壳式蒸发器内分流板均分性能的研究[J]. 化工学报, 2021, 72(9): 4629-4638.
[5] 郭中权, 邹湘, 毛维东, 孙邃, 马赛, 吕顺之, 刘雪菲, 王远. 矿井水脱盐过程中卷式反渗透膜性能的数值模拟研究[J]. 化工学报, 2021, 72(9): 4808-4815.
[6] 蒋雯雯, 聂鹏飞, 胡彬, 李菁菁, 刘建允. Al2O3/AC正极选择性电容吸附水中氟离子[J]. 化工学报, 2021, 72(5): 2817-2825.
[7] 杨锋苓, 曹明见, 张翠勋, 刘欣. 柔性Rushton搅拌桨的振动特性[J]. 化工学报, 2021, 72(4): 1975-1986.
[8] 张锐, 邵琦, 张华宇, 金泽龙, 张小亮. 硼掺杂二氧化硅杂化膜的制备及渗透汽化脱盐性能[J]. 化工学报, 2021, 72(4): 2317-2327.
[9] 蔡本安, 郭民承, 车勋建, 蔡伟华. 多级喷雾闪蒸海水淡化系统性能分析及响应面优化研究[J]. 化工学报, 2021, 72(11): 5573-5581.
[10] 陈裕博, 杨昭, 武晓昆, 吕子建, 张勇. R513A的饱和液相黏度特性研究[J]. 化工学报, 2021, 72(11): 5502-5509.
[11] 王洪远, 纪律, 孟繁旭, 李斌, 杨建蒙, 陈海生. 基于动态双重网格下喷动床滞止区流动特性CFD-DEM数值模拟[J]. 化工学报, 2021, 72(11): 5563-5572.
[12] 卞维柏, 潘建明. 电吸附技术及吸附电极材料研究进展[J]. 化工学报, 2021, 72(1): 304-319.
[13] 蔡坚锋, 王长宏, 冯杰. 多级针-网式离子风散热系统性能[J]. 化工学报, 2020, 71(S2): 111-117.
[14] 奥德, 张皓冰, 吕美婵, 王海涛, 常娜. MOF-199@GO改性PVDF荷电纳滤膜的制备及其性能[J]. 化工学报, 2020, 71(S2): 297-305.
[15] 谭明, 王文广, 张晓东, 赵洪武, 张杨, 杨兴涛. 正渗透策略和化学清洗海水淡化反渗透膜[J]. 化工学报, 2020, 71(S2): 306-313.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!