化工学报 ›› 2021, Vol. 72 ›› Issue (2): 727-747.DOI: 10.11949/0438-1157.20200792
收稿日期:
2020-06-22
修回日期:
2020-09-01
出版日期:
2021-02-05
发布日期:
2021-02-05
通讯作者:
赵颂
作者简介:
何鹏鹏(1995—),男,硕士研究生,基金资助:
HE Pengpeng(),ZHAO Song(),MAO Chenyue,WANG Zhi,WANG Jixiao
Received:
2020-06-22
Revised:
2020-09-01
Online:
2021-02-05
Published:
2021-02-05
Contact:
ZHAO Song
摘要:
耐溶剂纳滤是一种新型的膜分离技术,用于有机混合物的分离。商品耐溶剂纳滤膜大多是采用相转化法制备的整体皮层非对称膜,膜皮层较厚,通量较低。耐溶剂复合纳滤膜由基膜和分离层组成,具有薄皮层、高溶剂通量和高溶质截留率的优点。耐溶剂复合纳滤膜的制备与改性也因此成为近年来的研究热点。本文从界面聚合、表面涂覆、层层自组装、原位生长、有机-无机杂化和表面改性六个方面介绍耐溶剂复合纳滤膜的研究进展,最后对其发展前景进行展望。
中图分类号:
何鹏鹏, 赵颂, 毛晨岳, 王志, 王纪孝. 耐溶剂复合纳滤膜的研究进展[J]. 化工学报, 2021, 72(2): 727-747.
HE Pengpeng, ZHAO Song, MAO Chenyue, WANG Zhi, WANG Jixiao. Research progress of solvent-resistant composite nanofiltration membrane[J]. CIESC Journal, 2021, 72(2): 727-747.
1 | Marchetti P, Jimenez Solomon M F, Szekely G, et al. Molecular separation with organic solvent nanofiltration: a critical review[J]. Chemical Reviews, 2014, 114(21): 10735-10806. |
2 | Marchetti P, Peeva L, Livingston A. The selectivity challenge in organic solvent nanofiltration: membrane and process solutions[J]. Annual Review of Chemical and Biomolecular Engineering, 2017, 8: 473-497. |
3 | Vandezande P, Gevers L E, Vankelecom I F. Solvent resistant nanofiltration: separating on a molecular level[J]. Chemical Society Reviews, 2008, 37(2): 365-405. |
4 | Szekely G, Jimenez-Solomon M F, Marchetti P, et al. Sustainability assessment of organic solvent nanofiltration: from fabrication to application[J]. Green Chemistry, 2014, 16(10): 4440-4473. |
5 | Lim S K, Goh K, Bae T H, et al. Polymer-based membranes for solvent-resistant nanofiltration: a review[J]. Chinese Journal of Chemical Engineering, 2017, 25(11): 1653-1675. |
6 | 司会芳. 芳香族聚酰胺耐溶剂纳滤膜的制备及性能研究[D]. 大连: 大连理工大学, 2018. |
Si H F. Preparation and performance of aromatic polyamide based solvent-resistant nanofiltration membranes[D]. Dalian: Dalian University of Technology, 2018. | |
7 | Peyravi M, Rahimpour A, Jahanshahi M. Thin film composite membranes with modified polysulfone supports for organic solvent nanofiltration[J]. Journal of Membrane Science, 2012, 423/424: 225-237. |
8 | Solomon M F J, Bhole Y, Livingston A G. High flux hydrophobic membranes for organic solvent nanofiltration (OSN)-Interfacial polymerization, surface modification and solvent activation[J]. Journal of Membrane Science, 2013, 434: 193-203. |
9 | Hermans S, Dom E, Mariën H, et al. Efficient synthesis of interfacially polymerized membranes for solvent resistant nanofiltration[J]. Journal of Membrane Science, 2015, 476: 356-363. |
10 | Kim J H, Moon S J, Park S H, et al. A robust thin film composite membrane incorporating thermally rearranged polymer support for organic solvent nanofiltration and pressure retarded osmosis[J]. Journal of Membrane Science, 2018, 550: 322-331. |
11 | Karan S, Jiang Z, Livingston A G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation[J]. Science, 2015, 348(6241): 1347-1351. |
12 | Li Y, Li C, Li S, et al. Graphene oxide (GO)-interlayered thin-film nanocomposite (TFN) membranes with high solvent resistance for organic solvent nanofiltration (OSN)[J]. Journal of Materials Chemistry A, 2019, 7(21): 13315-13330. |
13 | Liang Y, Li C, Li S, et al. Graphene quantum dots (GQDs)-polyethyleneimine as interlayer for the fabrication of high performance organic solvent nanofiltration (OSN) membranes[J]. Chemical Engineering Journal, 2020, 380: 122462-122477. |
14 | Solomon M F J, Bhole Y, Livingston A G. High flux membranes for organic solvent nanofiltration (OSN)—interfacial polymerization with solvent activation[J]. Journal of Membrane Science, 2012, 423/424: 371-382. |
15 | Guo Y, Li S, Su B, et al. Fluorine incorporation for enhancing solvent resistance of organic solvent nanofiltration membrane[J]. Chemical Engineering Journal, 2019, 369: 498-510. |
16 | Solomon M F J, Song Q L, Jelfs K E, et al. Polymer nanofilms with enhanced microporosity by interfacial polymerization[J]. Nature Materials, 2016, 15: 760-767. |
17 | Pérez-Manríquez L, Neelakanda P, Peinemann K V. Tannin-based thin-film composite membranes for solvent nanofiltration[J]. Journal of Membrane Science, 2017, 541: 137-142. |
18 | Villalobos L F, Huang T, Peinemann K V. Cyclodextrin films with fast solvent transport and shape-selective permeability[J]. Advanced Materials, 2017, 29(26): 1606641-1606647. |
19 | Abdellah M H, Perez-Manriquez L, Puspasari T, et al. A catechin/cellulose composite membrane for organic solvent nanofiltration[J]. Journal of Membrane Science, 2018, 567: 139-145. |
20 | Liu J, Hua D, Zhang Y, et al. Precise molecular sieving architectures with Janus pathways for both polar and nonpolar molecules[J]. Advanced Materials, 2018, 30(11): 1705933-1705939. |
21 | Pérez-Manríquez L, Neelakanda P, Peinemann K V. Morin-based nanofiltration membranes for organic solvent separation processes[J]. Journal of Membrane Science, 2018, 554: 1-5. |
22 | Yuan Z, Wu X, Jiang Y, et al. Carbon dots-incorporated composite membrane towards enhanced organic solvent nanofiltration performance[J]. Journal of Membrane Science, 2018, 549: 1-11. |
23 | Das S K, Manchanda P, Peinemann K V. Solvent-resistant triazine-piperazine linked porous covalent organic polymer thin-film nanofiltration membrane[J]. Separation and Purification Technology, 2019, 213: 348-358. |
24 | Huang T, Puspasari T, Nunes S P, et al. Ultrathin 2D-layered cyclodextrin membranes for high-performance organic solvent nanofiltration[J]. Advanced Functional Materials, 2020, 30(4): 1906797-1906804. |
25 | Wu X, Zhou G, Cui X, et al. Nanoparticle-assembled thin film with amphipathic nanopores for organic solvent nanofiltration[J]. ACS Applied Materials & Interfaces, 2019, 11(19): 17804-17813. |
26 | Xu S J, Shen Q, Xu Z L, et al. Novel designed TFC membrane based on host-guest interaction for organic solvent nanofiltration (OSN)[J]. Journal of Membrane Science, 2019, 588: 117227-117237. |
27 | 石阳, 吴思燕, 汪翠萍, 等. 以碳酸氢铵为致孔剂的木质素磺酸铵耐溶剂复合纳滤膜的构筑及性能调控研究[J]. 膜科学与技术, 2019, 39(6): 87-93. |
Shi Y, Wu S Y, Wang C P, et al. Study on the construction and performance control of ammonium lignosulfonate nanofiltration membranes with ammonium bicarbonate as pore-forming agent[J]. Membrane Science and Technology, 2019, 39(6): 87-93. | |
28 | Almijbilee M M A, Wu X T, Zhou A Y, et al. Polyetheramide organic solvent nanofiltration membrane prepared via an interfacial assembly and polymerization procedure[J]. Separation and Purification Technology, 2020, 234: 116033-116042. |
29 | Thijs M, van Goethem C, Vankelecom I F J, et al. Binaphthalene-based polymer membranes with enhanced performance for solvent-resistant nanofiltration[J]. Journal of Membrane Science, 2020, 606: 118066-118075. |
30 | Zhai Z, Jiang C, Zhao N, et al. Polyarylate membrane constructed from porous organic cage for high-performance organic solvent nanofiltration[J]. Journal of Membrane Science, 2020, 595: 117505-117512. |
31 | Sun S P, Chung T S, Lu K J, et al. Enhancement of flux and solvent stability of Matrimid® thin-film composite membranes for organic solvent nanofiltration[J]. AIChE Journal, 2014, 60(10): 3623-3633. |
32 | Li C, Li S, Lv L, et al. High solvent-resistant and integrally crosslinked polyimide-based composite membranes for organic solvent nanofiltration[J]. Journal of Membrane Science, 2018, 564: 10-21. |
33 | Yang S, Zhen H, Su B. Polyimide thin film composite (TFC) membranes via interfacial polymerization on hydrolyzed polyacrylonitrile support for solvent resistant nanofiltration[J]. RSC Advances, 2017, 7(68): 42800-42810. |
34 | 梁懿之, 王肖肖, 李灿, 等. 界面聚合法制备高通量复合耐溶剂纳滤膜[J]. 膜科学与技术, 2019, 39: 38-46. |
Liang Y Z, Wang X X, Li C, et al. Preparation of high-flux organic solvent nanofiltration membrane via interfacial polymerization [J]. Membrane Science and Technology, 2019, 39(4): 38-46. | |
35 | 杨振生, 史克, 杨丽利, 等. 单体配比对PI/PP耐溶剂复合纳滤膜结构与性能的影响[J]. 天津工业大学学报, 2019, 38(1): 17-21+26. |
Yang Z S, Shi K, Yang L L, et al. Effect of monomer ratio on structure and properties of PI/PP solvent resistant nanofiltration membrane [J]. Journal of Tiangong University, 2019, 38(1): 17-21, 26. | |
36 | 何晓. 盐酸处理聚酰胺耐溶剂复合纳滤膜的性能研究[J]. 化学工程, 2018, 46(10): 69-73, 78. |
He X. Effect of hydrochloric acid treatment on properties of polyamide nanofiltration membrane with solvent resistance[J]. Chemical Engineering(China), 2018, 46(10): 69-73, 78. | |
37 | Zheng X, Zhou A, Wang Y, et al. Modulating hydrophobicity of composite polyamide membranes to enhance the organic solvent nanofiltration[J]. Separation and Purification Technology, 2019, 223: 211-223. |
38 | Volkov A V, Parashchuk V V, Stamatialis D F, et al. High permeable PTMSP/PAN composite membranes for solvent nanofiltration[J]. Journal of Membrane Science, 2009, 333(1/2): 88-93. |
39 | 蔡卫滨, 朴香兰, 李继定, 等. 不同交联剂对PDMS/PVDF纳滤膜溶剂回收性能的影响[J]. 化工学报, 2013, 64(2): 581-589. |
Cai W B, Piao X L, Li J D, et al. Solvent recovery performance of PDMS/PVDF nanofiltration membranes cured with different cross-linking reagents[J]. CIESC Journal, 2013, 64(2): 581-589. | |
40 | Akbari A, Meragawi S E, Martin S T, et al. Solvent transport behavior of shear aligned graphene oxide membranes and implications in organic solvent nanofiltration[J]. ACS Applied Materials & Interfaces, 2018, 10(2): 2067-2074. |
41 | Aburabie J H, Puspasari T, Peinemann K V. Alginate-based membranes: paving the way for green organic solvent nanofiltration[J]. Journal of Membrane Science, 2020, 596: 117615-117624. |
42 | Xu Y, You F, Sun H, et al. Realizing mussel-inspired polydopamine selective layer with strong solvent resistance in nanofiltration toward sustainable reclamation[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 5520-5528. |
43 | Xu Y C, Tang Y P, Liu L F, et al. Nanocomposite organic solvent nanofiltration membranes by a highly-efficient mussel-inspired co-deposition strategy[J]. Journal of Membrane Science, 2017, 526: 32-42. |
44 | Cook M, Gaffney P R J, Peeva L G, et al. Roll-to-roll dip coating of three different PIMs for organic solvent nanofiltration[J]. Journal of Membrane Science, 2018, 558: 52-63. |
45 | Feng Y, Weber M, Maletzko C, et al. Facile fabrication of sulfonated polyphenylenesulfone (sPPSU) membranes with high separation performance for organic solvent nanofiltration[J]. Journal of Membrane Science, 2018, 549: 550-558. |
46 | Tashvigh A A, Luo L, Chung T S, et al. A novel ionically cross-linked sulfonated polyphenylsulfone (sPPSU) membrane for organic solvent nanofiltration (OSN)[J]. Journal of Membrane Science, 2018, 545: 221-228. |
47 | Fei F, Le Phuong H A, Blanford C F, et al. Tailoring the performance of organic solvent nanofiltration membranes with biophenol coatings[J]. ACS Applied Polymer Materials, 2019, 1(3): 452-460. |
48 | Feng Y, Weber M, Maletzko C, et al. Fabrication of organic solvent nanofiltration membranes via facile bioinspired one-step modification[J]. Chemical Engineering Science, 2019, 198: 74-84. |
49 | Li B, Cui Y, Chung T S. Hydrophobic perfluoropolyether-coated thin-film composite membranes for organic solvent nanofiltration[J]. ACS Applied Polymer Materials, 2019, 1(3): 472-481. |
50 | Zhou S, Zhao Y, Zheng J, et al. High-performance functionalized polymer of intrinsic microporosity (PIM) composite membranes with thin and stable interconnected layer for organic solvent nanofiltration[J]. Journal of Membrane Science, 2019, 591: 117347-117356. |
51 | Li J Q, Zhang M X, Feng W L, et al. PIM-1 pore-filled thin film composite membranes for tunable organic solvent nanofiltration[J]. Journal of Membrane Science, 2020, 601: 117951-117958. |
52 | Shi G M, Chung T S. Teflon AF2400/polyethylene membranes for organic solvent nanofiltration (OSN)[J]. Journal of Membrane Science, 2020, 602: 117972-117981. |
53 | Siddique H, Peeva L G, Stoikos K, et al. Membranes for organic solvent nanofiltration based on preassembled nanoparticles[J]. Industrial & Engineering Chemistry Research, 2013, 52(3): 1109-1121. |
54 | Gorgojo P, Karan S, Wong H C, et al. Ultrathin polymer films with intrinsic microporosity: anomalous solvent permeation and high flux membranes[J]. Advanced Functional Materials, 2014, 24(30): 4729-4737. |
55 | Gao J, Japip S, Chung T S. Organic solvent resistant membranes made from a cross-linked functionalized polymer with intrinsic microporosity (PIM) containing thioamide groups[J]. Chemical Engineering Journal, 2018, 353: 689-698. |
56 | Puspasari T, Chakrabarty T, Genduso G, et al. Unique cellulose/polydimethylsiloxane blends as an advanced hybrid material for organic solvent nanofiltration and pervaporation membranes[J]. Journal of Materials Chemistry A, 2018, 6(28): 13685-13695. |
57 | Gevers L E M, Vankelecom I F J, Jacobs P A. Solvent-resistant nanofiltration with filled polydimethylsiloxane (PDMS) membranes[J]. Journal of Membrane Science, 2006, 278: 199-204. |
58 | Shao L, Cheng X Q, Wang Z X, et al. Tuning the performance of polypyrrole-based solvent-resistant composite nanofiltration membranes by optimizing polymerization conditions and incorporating graphene oxide[J]. Journal of Membrane Science, 2014, 452: 82-89. |
59 | 徐润平. 二氧化硅原位交联耐溶剂复合纳滤膜的制备及其性能研究[D]. 杭州: 浙江理工大学, 2019. |
Xu R P. Preparation and characterization of in-situ silica cross-linked solvent-resistant composite nanofiltration membrane[D]. Hangzhou: Zhejiang Sci-Tech University, 2019. | |
60 | Li X, Goyens W, Ahmadiannamini P, et al. Morphology and performance of solvent-resistant nanofiltration membranes based on multilayered polyelectrolytes: study of preparation conditions[J]. Journal of Membrane Science, 2010, 358: 150-157. |
61 | Li X F, Feyter S D, Chen D J, et al. Solvent-resistant nanofiltration membranes based on multilayered polyelectrolyte complexes[J]. Chemistry of Materials, 2008, 20: 3876–3883. |
62 | Ahmadiannamini P, Li X, Goyens W, et al. Influence of polyanion type and cationic counter ion on the SRNF performance of polyelectrolyte membranes[J]. Journal of Membrane Science, 2012, 403/404: 216-226. |
63 | Ilyas S, Joseph N, Szymczyk A, et al. Weak polyelectrolyte multilayers as tunable membranes for solvent resistant nanofiltration[J]. Journal of Membrane Science, 2016, 514: 322-331. |
64 | Chen D. Solvent-resistant nanofiltration membranes based on multilayered polyelectrolytes deposited on silicon composite[J]. Journal of Applied Polymer Science, 2013, 129(6): 3156-3161. |
65 | Jurin F E, Buron C C, Magnenet C, et al. Predictive tools for selection of appropriate polyelectrolyte multilayer film for the functionalization of organic membranes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 486: 153-160. |
66 | Zhao D, Kim J F, Ignacz G, et al. Bio-inspired robust membranes nanoengineered from interpenetrating polymer networks of polybenzimidazole/polydopamine[J]. ACS Nano, 2019, 13(1): 125-133. |
67 | Liu H X, Zhao C, Wang N, et al. Nanosheet α-Co(OH)2 composite membranes with ultrathin separation layer for removing dyes from solvent with high flux[J]. Separation and Purification Technology, 2018, 207: 506-513. |
68 | Namvar-Mahboub M, Pakizeh M. Development of a novel thin film composite membrane by interfacial polymerization on polyetherimide/modified SiO2 support for organic solvent nanofiltration[J]. Separation and Purification Technology, 2013, 119: 35-45. |
69 | Namvar-Mahboub M, Pakizeh M, Davari S. Preparation and characterization of UZM-5/polyamide thin film nanocomposite membrane for dewaxing solvent recovery[J]. Journal of Membrane Science, 2014, 459: 22-32. |
70 | Zhang H, Mao H, Wang J, et al. Mineralization-inspired preparation of composite membranes with polyethyleneimine–nanoparticle hybrid active layer for solvent resistant nanofiltration[J]. Journal of Membrane Science, 2014, 470: 70-79. |
71 | Li Y F, Mao H, Zhang H Q, et al. Tuning the microstructure and permeation property of thin film nanocomposite membrane by functionalized inorganic nanospheres for solvent resistant nanofiltration[J]. Separation and Purification Technology, 2016, 165: 60-70. |
72 | Liu Q, Wu X, Zhang K. Polysulfone/polyamide-SiO2 composite membrane with high permeance for organic solvent nanofiltration[J]. Membranes, 2018, 8(4): 1-12. |
73 | Peyravi M, Jahanshahi M, Rahimpour A, et al. Novel thin film nanocomposite membranes incorporated with functionalized TiO2 nanoparticles for organic solvent nanofiltration[J]. Chemical Engineering Journal, 2014, 241: 155-166. |
74 | Abadikhah H, Kalali E N, Behzadi S, et al. High flux thin film nanocomposite membrane incorporated with functionalized TiO2@reduced graphene oxide nanohybrids for organic solvent nanofiltration[J]. Chemical Engineering Science, 2019, 204: 99-109. |
75 | Ang E H, Chew J W. Two-dimensional transition-metal dichalcogenide-based membrane for ultrafast solvent permeation[J]. Chemistry of Materials, 2019, 31(24): 10002-10007. |
76 | Cui X, Wu X, Zhang J, et al. A loosely stacked lamellar membrane of irregular MoS2 flakes for ultrahigh water and organics permeation[J]. Journal of Materials Chemistry A, 2019, 7(20): 12698-12705. |
77 | Guo B Y, Jiang S D, Tang M J, et al. MoS2 membranes for organic solvent nanofiltration: stability and structural control[J]. The Journal of Physical Chemistry Letters, 2019, 10(16): 4609-4617. |
78 | Tham H M, Japip S, Chung T S. WS2 deposition on cross-linked polyacrylonitrile with synergistic transformation to yield organic solvent nanofiltration membranes[J]. Journal of Membrane Science, 2019, 588: 117219-117230. |
79 | Ran J, Zhang P, Chu C, et al. Ultrathin lamellar MoS2 membranes for organic solvent nanofiltration[J]. Journal of Membrane Science, 2020, 602: 117963. |
80 | Qu Y, Zhang Q G, Soyekwo F, et al. Nickel hydroxide nanosheet membranes with fast water and organics transport for molecular separation[J]. Nanoscale, 2016, 8(43): 18428-18435. |
81 | Roy S, Ntim S A, Mitra S, et al. Facile fabrication of superior nanofiltration membranes from interfacially polymerized CNT-polymer composites[J]. Journal of Membrane Science, 2011, 375: 81-87. |
82 | Davood Abadi Farahani M H, Hua D, Chung T S. Cross-linked mixed matrix membranes consisting of carboxyl-functionalized multi-walled carbon nanotubes and P84 polyimide for organic solvent nanofiltration (OSN)[J]. Separation and Purification Technology, 2017, 186: 243-254. |
83 | Ding R, Zhang H Q, Li Y F, et al. Graphene oxide-embedded nanocomposite membrane for solvent resistant nanofiltration with enhanced rejection ability[J]. Chemical Engineering Science, 2015, 138: 227-238. |
84 | Huang L, Chen J, Gao T, et al. Reduced graphene oxide membranes for ultrafast organic solvent nanofiltration[J]. Advanced Materials, 2016, 28(39): 8669-8674. |
85 | Gao T, Huang L, Li C, et al. Graphene membranes with tuneable nanochannels by intercalating self-assembled porphyrin molecules for organic solvent nanofiltration[J]. Carbon, 2017, 124: 263-270. |
86 | Xiao S, Yu S, Yan L, et al. Preparation and properties of PPSU/GO mixed matrix membrane[J]. Chinese Journal of Chemical Engineering, 2017, 25(4): 408-414. |
87 | Yang Q, Su Y, Chi C, et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation[J]. Nature Materials, 2017, 16(12): 1198-1202. |
88 | Yang H, Wang N, Wang L, et al. Vacuum-assisted assembly of ZIF-8@GO composite membranes on ceramic tube with enhanced organic solvent nanofiltration performance[J]. Journal of Membrane Science, 2018, 545: 158-166. |
89 | Liu M L, Guo J L, Japip S, et al. One-step enhancement of solvent transport, stability and photocatalytic properties of graphene oxide/polyimide membranes with multifunctional cross-linkers[J]. Journal of Materials Chemistry A, 2019, 7(7): 3170-3178. |
90 | Mahalingam D K, Wang S, Nunes S P. Stable graphene oxide cross-linked membranes for organic solvent nanofiltration[J]. Industrial & Engineering Chemistry Research, 2019, 58(51): 23106-23113. |
91 | Nie L, Goh K, Wang Y, et al. Realizing small-flake graphene oxide membranes for ultrafast size-dependent organic solvent nanofiltration[J]. Science Advances, 2020, 6(17): eaaz9184. |
92 | Wu X L, Hao L, Zhang J K, et al. Polymer-Ti3C2Tx composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system[J]. Journal of Membrane Science, 2016, 515: 175-188. |
93 | Han R, Xie Y, Ma X. Crosslinked P84 copolyimide/MXene mixed matrix membrane with excellent solvent resistance and permselectivity[J]. Chinese Journal of Chemical Engineering, 2019, 27(4): 877-883. |
94 | Wei S, Xie Y, Xing Y, et al. Two-dimensional graphene oxide/MXene composite lamellar membranes for efficient solvent permeation and molecular separation[J]. Journal of Membrane Science, 2019, 582: 414-422. |
95 | Li S, Li C, Song X, et al. Graphene quantum dots-doped thin film nanocomposite polyimide membranes with enhanced solvent resistance for solvent-resistant nanofiltration[J]. ACS Applied Materials & Interfaces, 2019, 11(6): 6527-6540. |
96 | Li S X, Li C, Su B W, et al. Amino-functionalized graphene quantum dots (aGQDs)-embedded thin film nanocomposites for solvent resistant nanofiltration (SRNF) membranes based on covalence interactions[J]. Journal of Membrane Science, 2019, 588: 117212-117224. |
97 | 郝澜. 基于功能化MXene的有机溶剂纳滤膜制备及其性能优化[D]. 郑州: 郑州大学, 2018. |
Hao L. Preparation and properties optimization of organic solvent nanofiltration membrane based on functional MXene[D]. Zhengzhou: Zhengzhou University, 2018. | |
98 | Sorribas S, Gorgojo P, Tellez C, et al. High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration[J]. Journal of the American Chemical Society, 2013, 135(40): 15201-15208. |
99 | Car A, Stropnik C, Peinemann K V. Hybrid membrane materials with different metal-organic frameworks (MOFs) for gas separation[J]. Desalination, 2006, 200: 424-426. |
100 | Echaide-Gorriz C, Navarro M, Tellez C, et al. Simultaneous use of MOFs MIL-101(Cr) and ZIF-11 in thin film nanocomposite membranes for organic solvent nanofiltration[J]. Dalton Transactions, 2017, 46(19): 6244-6252. |
101 | Sarango L, Paseta L, Navarro M, et al. Controlled deposition of MOFs by dip-coating in thin film nanocomposite membranes for organic solvent nanofiltration[J]. Journal of Industrial and Engineering Chemistry, 2018, 59: 8-16. |
102 | Gao Z F, Feng Y, Ma D, et al. Vapor-phase crosslinked mixed matrix membranes with UiO-66-NH2 for organic solvent nanofiltration[J]. Journal of Membrane Science, 2019, 574: 124-135. |
103 | Campbell J, Székely G, Davies R P, et al. Fabrication of hybrid polymer/metal organic framework membranes: mixed matrix membranes versus in situ growth[J]. Journal of Materials Chemistry A, 2014, 2(24): 9260-9271. |
104 | Campbell J, Davies R P, Braddock D C, et al. Improving the permeance of hybrid polymer/metal–organic framework (MOF) membranes for organic solvent nanofiltration (OSN) – development of MOF thin films via interfacial synthesis[J]. Journal of Materials Chemistry A, 2015, 3(18): 9668-9674. |
105 | Campbell J, Burgal J D S, Szekely G, et al. Hybrid polymer/MOF membranes for organic solvent nanofiltration (OSN): chemical modification and the quest for perfection[J]. Journal of Membrane Science, 2016, 503: 166-176. |
106 | Yuan S, Li X, Zhu J, et al. Covalent organic frameworks for membrane separation[J]. Chemical Society Reviews, 2019, 48(10): 2665-2681. |
107 | Dey K, Pal M, Rout K C, et al. Selective molecular separation by interfacially crystallized covalent organic framework thin films[J]. Journal of the American Chemical Society, 2017, 139(37): 13083-13091. |
108 | Shinde D B, Sheng G, Li X, et al. Crystalline 2D covalent organic framework membranes for high-flux organic solvent nanofiltration[J]. Journal of the American Chemical Society, 2018, 140(43): 14342-14349. |
109 | Li C, Li S X, Tian L, et al. Covalent organic frameworks (COFs)-incorporated thin film nanocomposite (TFN) membranes for high-flux organic solvent nanofiltration (OSN)[J]. Journal of Membrane Science, 2019, 572: 520-531. |
110 | Karimi A, Khataee A, Safarpour M, et al. Development of mixed matrix ZIF-8/polyvinylidene fluoride membrane with improved performance in solvent resistant nanofiltration[J]. Separation and Purification Technology, 2020, 237: 116358-116369. |
111 | Guo X Y, Liu D H, Han T T, et al. Preparation of thin film nanocomposite membranes with surface modified MOF for high flux organic solvent nanofiltration[J]. AIChE Journal, 2017, 63(4): 1303-1312. |
112 | Sani N A A, Lau W J, Ismail A F. Polyphenylsulfone-based solvent resistant nanofiltration (SRNF) membrane incorporated with copper-1,3,5-benzenetricarboxylate (Cu-BTC) nanoparticles for methanol separation[J]. RSC Advances, 2015, 5(17): 13000-13010. |
113 | He D, Susanto H, Ulbricht M. Photo-irradiation for preparation, modification and stimulation of polymeric membranes[J]. Progress in Polymer Science, 2009, 34(1): 62-98. |
114 | Kochkodan V, Johnson D J, Hilal N. Polymeric membranes: surface modification for minimizing (bio)colloidal fouling[J]. Advances in Colloid and Interface Science, 2014, 206: 116-140. |
115 | Deng J, Wang L, Liu L, et al. Developments and new applications of UV-induced surface graft polymerizations[J]. Progress in Polymer Science, 2009, 34(2): 156-193. |
116 | Kochkodan V, Hilal N. A comprehensive review on surface modified polymer membranes for biofouling mitigation[J]. Desalination, 2015, 356: 187-207. |
117 | Tian J, Wu C, Yu H, et al. Applying ultraviolet/persulfate (UV/PS) pre-oxidation for controlling ultrafiltration membrane fouling by natural organic matter (NOM) in surface water[J]. Water Research, 2018, 132: 190-199. |
118 | Behnke S, Ulbricht M. Thin-film composite membranes for organophilic nanofiltration based on photo-cross-linkable polyimide[J]. Reactive and Functional Polymers, 2015, 86: 233-242. |
119 | Li X, Fustin C A, Lefèvre N, et al. Ordered nanoporous membranes based on diblock copolymers with high chemical stability and tunable separation properties[J]. Journal of Materials Chemistry, 2010, 20: 4333-4339. |
120 | Stamatialis D F, Stafie N, Buadu K, et al. Observations on the permeation performance of solvent resistant nanofiltration membranes[J]. Journal of Membrane Science, 2006, 279: 424-433. |
121 | Vanherck K, Hermans S, Verbiest T, et al. Using the photothermal effect to improve membrane separations via localized heating[J]. Journal of Materials Chemistry, 2011, 21(16): 6079–6087. |
122 | Vanherck K, Vankelecom I, Verbiest T. Improving fluxes of polyimide membranes containing gold nanoparticles by photothermal heating[J]. Journal of Membrane Science, 2011, 373: 5-13. |
123 | Li Y, Verbiest T, Vankelecom I. Improving the flux of PDMS membranes via localized heating through incorporation of gold nanoparticles[J]. Journal of Membrane Science, 2013, 428: 63-69. |
124 | Li Y, Verbiest T, Strobbe R, et al. Silver nanoparticles as localized “nano-heaters” under LED light irradiation to improve membrane performance[J]. Journal of Materials Chemistry A, 2014, 2(9): 3182–3189. |
125 | Robinson J P, Tarleton E S, Ebert K, et al. Influence of cross-linking and process parameters on the separation performance of poly(dimethylsiloxane) nanofiltration membranes[J]. Industrial & Engineering Chemistry Research., 2005, 44: 3238-3248. |
126 | Amirilargani M, Merlet R B, Nijmeijer A, et al. Poly (maleic anhydride-alt-1-alkenes) directly grafted to gamma-alumina for high-performance organic solvent nanofiltration membranes[J]. Journal of Membrane Science, 2018, 564: 259-266. |
127 | Pinheiro A F M, Hoogendoorn D, Nijmeijer A, et al. Development of a PDMS-grafted alumina membrane and its evaluation as solvent resistant nanofiltration membrane[J]. Journal of Membrane Science, 2014, 463: 24-32. |
128 | Denes F, Manolache S. Macromolecular plasma-chemistry: an emerging field of polymer science[J]. Progress in Polymer Science, 2004, 29(8): 815-885. |
129 | Kull K R, Steen M L, Fisher E R. Surface modification with nitrogen-containing plasmas to produce hydrophilic, low-fouling membranes[J]. Journal of Membrane Science, 2005, 246(2): 203-215. |
130 | Zhao Z P, Li J, Wang D, et al. Nanofiltration membrane prepared from polyacrylonitrile ultrafiltration membrane by low-temperature plasma(4): Grafting of N-vinylpyrrolidone in aqueous solution[J]. Desalination, 2005, 184(1/2/3): 37-44. |
131 | Aerts S, Vanhulsel A, Buekenhoudt A, et al. Plasma-treated PDMS-membranes in solvent resistant nanofiltration: characterization and study of transport mechanism[J]. Journal of Membrane Science, 2006, 275: 212-219. |
132 | Tyszler D, Zytner R G, Batsch A, et al. Reduced fouling tendencies of ultrafiltration membranes in wastewater treatment by plasma modification[J]. Desalination, 2006, 189(1/2/3): 119-129. |
133 | Chen J, Li J, Zhao Z P, et al. Nanofiltration membrane prepared from polyacrylonitrile ultrafiltration membrane by low-temperature plasma(5): Grafting of styrene in vapor phase and its application[J]. Surface and Coatings Technology, 2007, 201(15): 6789-6792. |
134 | Yu H Y, He X C, Liu L Q, et al. Surface modification of polypropylene microporous membrane to improve its antifouling characteristics in an SMBR: N2 plasma treatment[J]. Water Research, 2007, 41(20): 4703-4709. |
135 | Yu H Y, Liu L Q, Tang Z Q, et al. Surface modification of polypropylene microporous membrane to improve its antifouling characteristics in an SMBR: air plasma treatment[J]. Journal of Membrane Science, 2008, 311(1/2): 216-224. |
136 | He X C, Yu H Y, Tang Z Q, et al. Reducing protein fouling of a polypropylene microporous membrane by CO2 plasma surface modification[J]. Desalination, 2009, 244: 80-89. |
137 | Volkov A V, Tsarkov S E, Gilman A B, et al. Surface modification of PTMSP membranes by plasma treatment: asymmetry of transport in organic solvent nanofiltration[J]. Advances in Colloid and Interface Science, 2015, 222: 716-727. |
138 | Miller D J, Dreyer D R, Bielawski C W, et al. Surface modification of water purification membranes[J]. Angewandte Chemie International Edition, 2017, 56(17): 4662-4711. |
139 | Karan S, Samitsu S, Peng D, et al. Ultrafast viscous permeation of organic solvents through diamond-like carbon nanosheets[J]. Science, 2012, 335(6067): 444-447. |
140 | Mitev D, Radeva E, Peshev D, et al. PECVD modification of nano & ultrafiltration membranes for organic solvent nanofiltration[J]. Journal of Membrane Science, 2018, 548: 540-547. |
141 | Akhavan B, Wise S G, Bilek M M M. Substrate-regulated growth of plasma-polymerized films on carbide-forming metals[J]. Langmuir, 2016, 32(42): 10835-10843. |
142 | Gao Z F, Shi G M, Cui Y, et al. Organic solvent nanofiltration (OSN) membranes made from plasma grafting of polyethylene glycol on cross-linked polyimide ultrafiltration substrates[J]. Journal of Membrane Science, 2018, 565: 169-178. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[3] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[4] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[5] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[6] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[7] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[8] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[9] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[10] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[11] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
[12] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[13] | 陈朝光, 贾玉香, 汪锰. 以低浓度废酸驱动中和渗析脱盐的模拟与验证[J]. 化工学报, 2023, 74(6): 2486-2494. |
[14] | 顾浩, 张福建, 刘珍, 周文轩, 张鹏, 张忠强. 力电耦合作用下多孔石墨烯膜时间维度的脱盐性能及机理研究[J]. 化工学报, 2023, 74(5): 2067-2074. |
[15] | 袁子涵, 王淑彦, 邵宝力, 谢磊, 陈曦, 马一玫. 基于幂律液固曳力模型流化床内湿颗粒流动特性的研究[J]. 化工学报, 2023, 74(5): 2000-2012. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||