化工学报 ›› 2021, Vol. 72 ›› Issue (6): 3130-3139.DOI: 10.11949/0438-1157.20201594
李燕1,2,3(),王敏1,2(),赵有璟1,2,王怀有1,2,杨红军1,2,祝增虎1,2
收稿日期:
2020-11-03
修回日期:
2020-12-18
出版日期:
2021-06-05
发布日期:
2021-06-05
通讯作者:
王敏
作者简介:
李燕(1992—),女,博士研究生,基金资助:
LI Yan1,2,3(),WANG Min1,2(),ZHAO Youjing1,2,WANG Huaiyou1,2,YANG Hongjun1,2,ZHU Zenghu1,2
Received:
2020-11-03
Revised:
2020-12-18
Online:
2021-06-05
Published:
2021-06-05
Contact:
WANG Min
摘要:
纳滤作为一种新兴的膜分离技术,在高镁锂比盐湖卤水镁、锂分离领域具有非常好的应用前景。研究了不同镁锂比、原料液循环流量对镁锂分离过程的影响,并对膜分离过程中的分离机理进行分析。结果表明原料液镁锂比对膜通量影响较小,镁、锂离子截留率及镁锂分离效果均随原料液镁锂比的增加而降低。当原料液循环流量为225 L/h时,镁离子截留率为95%,锂离子截留率为-66%,透过液镁锂比降低至1.2。膜分离传质机理研究表明,镁离子在分离过程中受到较强的介电排斥效应与尺寸筛分效应。纳滤技术能够有效降低高镁锂比盐湖卤水的镁锂比,为后续高纯锂盐的制备提供基础。
中图分类号:
李燕, 王敏, 赵有璟, 王怀有, 杨红军, 祝增虎. 纳滤膜对高镁锂比盐湖卤水镁锂分离性能研究[J]. 化工学报, 2021, 72(6): 3130-3139.
LI Yan, WANG Min, ZHAO Youjing, WANG Huaiyou, YANG Hongjun, ZHU Zenghu. Study on separation of magnesium and lithium from salt lake brine with high magnesium-to-lithium mass ratio by nanofiltration membrane[J]. CIESC Journal, 2021, 72(6): 3130-3139.
离子 | 水合半径/nm | 扩散系数/(m2/S) |
---|---|---|
Mg2+ | 0.428 | 0.72×104 |
Li+ | 0.382 | 1.03×104 |
Cl- | 0.332 | 2.03×104 |
表1 溶质的水合半径和扩散系数
Table 1 Hydrated radius and diffusion coefficient of solutes
离子 | 水合半径/nm | 扩散系数/(m2/S) |
---|---|---|
Mg2+ | 0.428 | 0.72×104 |
Li+ | 0.382 | 1.03×104 |
Cl- | 0.332 | 2.03×104 |
图1 卷式纳滤膜分离装置1—循环罐;2—管道过滤器;3—柱塞隔膜泵;4—变频器;5—透过液;6—卷式膜组件;7—调压阀;8—浓缩液流量计;9—溢流液;10—浓缩液;11—原料液;12—冷却水;13—加热水
Fig.1 Schematic diagram of the spiral-wound membrane apparatus
膜元件 | 最高操作压力/MPa | pH操作范围 | 工作温度/ K |
---|---|---|---|
DK-1812 | 3.5 | 2~11 | 283~323 |
表2 DK纳滤膜主要操作参数
Table 2 Main operating parameters of DK nanofiltration membrane
膜元件 | 最高操作压力/MPa | pH操作范围 | 工作温度/ K |
---|---|---|---|
DK-1812 | 3.5 | 2~11 | 283~323 |
膜 | 溶液环境 | zeta电位/mV |
---|---|---|
DK新膜 | 1 mol/L KCl | -0.013 |
运行一年后回收DK膜 | 1 mol/L KCl | -45 |
DK新膜 | 模拟卤水 | -11 |
表3 不同溶液条件下DK纳滤膜表面荷电性
Table 3 The surface electric charge of DK nanofiltration membrane in different solutions
膜 | 溶液环境 | zeta电位/mV |
---|---|---|
DK新膜 | 1 mol/L KCl | -0.013 |
运行一年后回收DK膜 | 1 mol/L KCl | -45 |
DK新膜 | 模拟卤水 | -11 |
原料液镁锂比 | 透过液镁锂比 | 锂离子回收率/% |
---|---|---|
17 | 0.5 | 10.4 |
30 | 1.0 | 11.0 |
40 | 1.7 | 11.1 |
53 | 2.4 | 11.4 |
63 | 3.2 | 11.5 |
75 | 4.3 | 11.6 |
表4 透过液镁锂比及锂离子回收率随原料液镁锂比的变化
Table 4 Variations of Mg/Li in the permeate and the yield of lithium with increasing Mg/Li of feed
原料液镁锂比 | 透过液镁锂比 | 锂离子回收率/% |
---|---|---|
17 | 0.5 | 10.4 |
30 | 1.0 | 11.0 |
40 | 1.7 | 11.1 |
53 | 2.4 | 11.4 |
63 | 3.2 | 11.5 |
75 | 4.3 | 11.6 |
23 | Li Y, Zhao Y J, Wang H Y, et al. The application of nanofiltration membrane for recovering lithium from salt lake brine[J]. Desalination, 2019, 468: 114081. |
24 | Izák P, Godinho M H, Brogueira P, et al. 3D topography design of membranes for enhanced mass transport[J]. Journal of Membrane Science, 2008, 321(2): 337-343. |
25 | 邢卫红, 仲兆祥, 景文珩, 等. 基于膜表面与界面作用的膜污染控制方法[J]. 化工学报, 2013, 64(1): 173-181. |
Xing W H, Zhong Z X, Jing W H, et al. Controlling of membrane fouling based on membrane interface interactions[J]. CIESC Journal, 2013, 64(1): 173-181. | |
26 | Boussu K, Belpaire A, Volodin A, et al. Influence of membrane and colloid characteristics on fouling of nanofiltration membranes[J]. Journal of Membrane Science, 2007, 289(1/2): 220-230. |
27 | Contreras A E, Steiner Z, Miao J, et al. Studying the role of common membrane surface functionalities on adsorption and cleaning of organic foulants using QCM-D[J]. Environmental Science & Technology, 2011, 45(15): 6309-6315. |
28 | Wang Z, Liu G C, Fan Z F, et al. Experimental study on treatment of electroplating wastewater by nanofiltration[J]. Journal of Membrane Science, 2007, 305(1/2): 185-195. |
29 | Elimelech M, Chen W H, Waypa J J. Measuring the zeta (electrokinetic) potential of reverse osmosis membranes by a streaming potential analyzer[J]. Desalination, 1994, 95(3): 269-286. |
30 | 温现明. 荷电膜在盐湖卤水中的传递性质研究[D]. 青海: 中国科学院研究生院(青海盐湖研究所), 2006. |
Wen X M. Transport properties of charged membranes in the treatment of salt lake brines[D]. Qinghai: Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 2006. | |
31 | Yaroshchuk A E. Non-steric mechanisms of nanofiltration: superposition of Donnan and dielectric exclusion[J]. Separation and Purification Technology, 2001, 22/23: 143-158. |
32 | Yaroshchuk A E. Dielectric exclusion of ions from membranes[J]. Advances in Colloid and Interface Science, 2000, 85(2/3): 193-230. |
1 | 王秋舒, 元春华. 全球锂矿供应形势及我国资源安全保障建议[J]. 中国矿业, 2019, 28(5): 1-6. |
Wang Q S, Yuan C H. The global supply situation of lithium ore and suggestions on resources security in China[J]. China Mining Magazine, 2019, 28(5): 1-6. | |
2 | 卢兆群, 成世才, 宋永芬, 等. 济南某地区裂隙岩溶地下水硝酸盐污染现状及溯源浅析[J]. 化工矿产地质, 2016, 38(4): 226-231. |
Lu Z Q, Cheng S C, Song Y F, et al. Nitrate pollution situation and source tracing of fissure Karst groundwater in some area, Jinan[J]. Geology of Chemical Minerals, 2016, 38(4): 226-231. | |
3 | 林大泽. 锂的用途及其资源开发[J]. 中国安全科学学报, 2004, 14(9): 72-76. |
Lin D Z. Uses of lithium and its resource exploitation[J]. China Safety Science Journal, 2004, 14(9): 72-76. | |
4 | 游清治. 锂在玻璃陶瓷工业中的应用[J]. 世界有色金属, 2000, (2): 26-31 |
You Q Z. Application of lithium in glass ceramic industry[J]. World Nonferrous Metals, 2000, (2): 26-31 | |
5 | Delgado M A, Valencia C, Sánchez M C, et al. Thermorheological behaviour of a lithium lubricating grease[J]. Tribology Letters, 2006, 23(1): 47-54. |
6 | 邱报. 富锂锰基正极材料的表面改性及其储能机理研究[D]. 宁波: 中国科学院宁波材料技术与工程研究所, 2016. |
Qiu B. Mechanisms of surface modification and energy storage in Li-rich layered oxide cathode materials[D]. Ningbo: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 2016. | |
7 | 黄福闯, 张洪信, 霍炜, 等. 软碳负极材料锂电池在储能电站应用研究[J]. 电源学报, 2020, 18(3): 184-190. |
Huang F C, Zhang H X, Huo W, et al. Research on applications of soft carbon anode material lithium battery in energy storage power station[J]. Journal of Power Supply, 2020, 18(3): 184-190. | |
8 | 周园园. 中国锂资源供需形势及对外依存度分析[J]. 资源与产业, 2019, 21(3): 46-50. |
Zhou Y Y. Supply-demand situation and external dependence of China's lithium resource[J]. Resources & Industries, 2019, 21(3): 46-50. | |
9 | 曹兆江, 高敏, 宁占玉, 等. 青海盐湖锂资源及提锂技术概述[J]. 化工设计通讯, 2019, 45(6): 190,207. |
Cao Z J, Gao M, Ning Z Y, et al. Lithium resources and lithium extraction technology in Qinghai salt lake[J]. Chemical Engineering Design Communications, 2019, 45(6): 190,207. | |
10 | Ji Z Y, Chen Q B, Yuan J S, et al. Preliminary study on recovering lithium from high Mg2+/Li+ ratio brines by electrodialysis[J]. Separation and Purification Technology, 2017, 172: 168-177. |
11 | Sun S Y, Cai L J, Nie X Y, et al. Separation of magnesium and lithium from brine using a desal nanofiltration membrane[J]. Journal of Water Process Engineering, 2015, 7: 210-217. |
12 | Bi Q, Zhang Z, Zhao C, et al. Study on the recovery of lithium from high Mg2+/Li+ ratio brine by nanofiltration[J]. Water Science and Technology, 2014, 70(10): 1690-1694. |
13 | Listiarini K, Sun D D, Leckie J O. Organic fouling of nanofiltration membranes: evaluating the effects of humic acid, calcium, alum coagulant and their combinations on the specific cake resistance[J]. Journal of Membrane Science, 2009, 332(1/2): 56-62. |
14 | Tang C Y, Kwon Y N, Leckie J O. Fouling of reverse osmosis and nanofiltration membranes by humic acid—effects of solution composition and hydrodynamic conditions[J]. Journal of Membrane Science, 2007, 290(1/2): 86-94. |
15 | Mohammad A W, Teow Y H, Ang W L, et al. Nanofiltration membranes review: recent advances and future prospects[J]. Desalination, 2015, 356: 226-254. |
16 | 刘洪国, 孙德军, 郝京诚. 新编胶体与界面化学[M]. 北京: 化学工业出版社, 2016: 209. |
Liu H G, Sun D J, Hao J C. Colloid and Interface Chemistry[M]. Beijing: Chemical Industry Press, 2016: 209. | |
17 | Yang G, Shi H, Liu W Q, et al. Investigation of Mg2+/Li+ separation by nanofiltration[J]. Chinese Journal of Chemical Engineering, 2011, 19(4): 586-591. |
18 | Hilal N, Al-Zoubi H, Darwish N A, et al. Nanofiltration of magnesium chloride, sodium carbonate, and calcium sulphate in salt solutions[J]. Separation Science and Technology, 2005, 40(16): 3299-3321. |
19 | Somrani A, Hamzaoui A H, Pontie M. Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO)[J]. Desalination, 2013, 317: 184-192. |
20 | Volkov A G, Paula S, Deamer D W. Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers[J]. Bioelectrochemistry and Bioenergetics, 1997, 42(2): 153-160. |
21 | Childress A E, Elimelech M. Relating nanofiltration membrane performance to membrane charge (electrokinetic) characteristics[J]. Environmental Science & Technology, 2000, 34(17): 3710-3716. |
22 | Li Y, Zhao Y J, Wang M. Effects of pH and salinity on the separation of magnesium and lithium from brine by nanofiltration[J]. Desalination and Water Treatment, 2017, 97: 141-150. |
33 | 苏慧, 朱兆武, 王丽娜, 等. 从盐湖卤水中提取与回收锂的技术进展及展望[J]. 材料导报, 2019, 33(13): 2119-2126. |
Su H, Zhu Z W, Wang L N, et al. Advances and prospects of extracting and recovering lithium from salt lake brines[J]. Materials Reports, 2019, 33(13): 2119-2126. | |
34 | Wang X L, Tsuru T, Nakao S I, et al. The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membranes[J]. Journal of Membrane Science, 1997, 135(1): 19-32. |
35 | Choi H, Zhang K, Dionysiou D D, et al. Effect of permeate flux and tangential flow on membrane fouling for wastewater treatment[J]. Separation and Purification Technology, 2005, 45(1): 68-78. |
36 | Yao W X, Kennedy K J, Tam C M, et al. Pre-treatment of kraft pulp bleach plant effluent by selected ultrafiltration membranes[J]. The Canadian Journal of Chemical Engineering, 1994, 72(6): 991-999. |
37 | Mänttäri M, Pihlajamäki A, Kaipainen E, et al. Effect of temperature and membrane pre-treatment by pressure on the filtration properties of nanofiltration membranes[J]. Desalination, 2002, 145(1/2/3): 81-86. |
38 | Mukherjee P, SenGupta A K. Ion exchange selectivity as a surrogate indicator of relative permeability of ions in reverse osmosis processes[J]. Environmental Science & Technology, 2003, 37(7): 1432-1440. |
39 | Bhattacharjee S, Kim A S, Elimelech M. Concentration polarization of interacting solute particles in cross-flow membrane filtration[J]. Journal of Colloid and Interface Science, 1999, 212(1): 81-99. |
40 | Ochando-Pulido J M, Verardo V, Segura-Carretero A, et al. Analysis of the concentration polarization and fouling dynamic resistances under reverse osmosis membrane treatment of olive mill wastewater[J]. Journal of Industrial and Engineering Chemistry, 2015, 31: 132-141. |
41 | Li X H, Zhang C J, Zhang S N, et al. Preparation and characterization of positively charged polyamide composite nanofiltration hollow fiber membrane for lithium and magnesium separation[J]. Desalination, 2015, 369: 26-36. |
42 | 王大新, 苏萌, 王晓琳. 液体分离膜过程中的浓差极化及其评价方法[J]. 膜科学与技术, 2005, 25(6): 64-68. |
Wang D X, Su M, Wang X L. How to evaluate concentration polarization in the process of liquid membrane separation[J]. Membrane Science and Technology, 2005, 25(6): 64-68. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[3] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[4] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[5] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[6] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[7] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[8] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[9] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[10] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[11] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[12] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[13] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[14] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[15] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||