化工学报 ›› 2019, Vol. 70 ›› Issue (12): 4680-4688.DOI: 10.11949/j.issn.0438-1157.20190885
收稿日期:
2019-07-25
修回日期:
2019-08-15
出版日期:
2019-12-05
发布日期:
2019-12-05
通讯作者:
邹志云
作者简介:
于蒙(1987—),男,博士研究生,助理研究员,Received:
2019-07-25
Revised:
2019-08-15
Online:
2019-12-05
Published:
2019-12-05
Contact:
Zhiyun ZOU
摘要:
针对电热水浴装置温度控制中被控对象存在的大惯性、非线性、大延迟等特点,设计了一种基于改进差分进化(improved differential evolution, IDE)算法的径向基(radial basis function, RBF)神经网络串级控制系统。采用IDE算法对RBF神经网络的初始参数进行优化,采用优化后的RBF神经网络辨识主控制回路被控对象的Jacobian信息,进而实现主控制回路PID(proportional integration differentiation)控制器参数的在线调整。针对主控制回路控制器包含输出噪声,导致控制性能下降的问题,引入Kalman 滤波器对串级控制的主回路进行重新设计,控制对象的输出值经过Kalman 滤波算法处理后再返回闭环控制系统。以微化工领域常用电热水浴装置为对象,对IDE-RBF-PID-PI串级控制系统进行仿真实验,结果表明,IDE-RBF-PID-PI串级控制系统相较于常规串级控制,大大提高了控制性能,主控制回路引入的Kalman滤波算法有效消减控制系统的输出噪声,控制效果接近于无噪声的理想状态。
中图分类号:
于蒙, 邹志云. 基于改进差分进化算法-径向基神经网络的电热水浴串级控制系统研究[J]. 化工学报, 2019, 70(12): 4680-4688.
Meng YU, Zhiyun ZOU. Electric heated water bath cascade control system research based on improved differential evolution algorithm-radial basis function neural network[J]. CIESC Journal, 2019, 70(12): 4680-4688.
数据状态 | 绝对误差积分 |
---|---|
理想情况 | 0.01149 |
有噪声 | 0.08365 |
滤波后 | 0.01298 |
表1 不同状态下跟踪绝对误差
Table 1 Tracking absolute error under different states
数据状态 | 绝对误差积分 |
---|---|
理想情况 | 0.01149 |
有噪声 | 0.08365 |
滤波后 | 0.01298 |
1 | 刘凤萍 . 电热恒温水浴锅温度场(温度均匀性)测量值的不确定度评定[J]. 计量与测试技术, 2016, 43(1): 84-85. |
Liu F P . Evaluation of uncertainty about measurement results of electric heating constant temperature water-bath temperature uniformity[J]. Metrology & Measurement Technique, 2016, 43(1): 84-85. | |
2 | 王志甄, 邹志云 .电热水浴装置的MPC-PID串级控制研究[J]. 石油化工自动化, 2018, 54(3): 36-40. |
Wang Z Z , Zou Z Y . Research on MPC-PID cascade control of electric-heated water bath device[J]. Automation in Petro-Chemical Industry, 2018, 54(3): 36-40. | |
3 | Karthikeyan R , Manickavasagam K , Tripathi S , et al . Neuro-fuzzy-based control for parallel cascade control[J]. Chemical Product and Process Modeling, 2013, 8(1): 15-25. |
4 | Sakthivel R , Sathishkumar M , Ren Y , et al . Fault-tolerant sampled-data control of singular networked cascade control systems[J]. International Journal of Systems Science, 2017, 48(10): 2079-2090. |
5 | Hu Y F , Chen C H , Wu H C , et al . Study on structural optimization design and cascade PID control of maglev actuator for active vibration isolation system[J]. Journal of Vibration and Control, 2018, 24(10): 1829-1847. |
6 | Khalil H K . Cascade high-gain observers in output feedback control[J]. Automatica, 2017, 80(4): 110-118. |
7 | 林巍, 王亚刚 . 串级控制系统闭环辨识及PID参数整定[J]. 控制工程, 2018, 25(1): 11-18. |
Lin W , Wang Y G . Modeling for cascade control systems based on frequency domain and PID parameter tuning[J]. Control Engineering of China, 2018, 25(1): 11-18. | |
8 | 柴杰, 江青茵, 曹志凯 . RBF神经网络的函数逼近能力及其算法[J]. 模式识别与人工智能, 2002, 15(3): 310-316. |
Chai J , Jiang Q Y , Cao Z K . Function approximation capability and algorithms of RBF neural networks[J]. Pattern Recognition and Artificial Intelligence, 2002, 15(3): 310-316. | |
9 | Behnam T , Fariba Z , Houman Z , et al . Utilization of RBF-ANN as a novel approach for estimation of asphaltene inhibition efficiency[J]. Petroleum Science and Technology, 2018, 36(16): 1216-1221. |
10 | 丰会萍, 胡亚南, 李明辉, 等 . 基于RBF-PID的多功能包装机热封温度控制[J]. 制造业自动化, 2018, 40(1): 16-20. |
Feng H P , Hu Y N , Li M H , et al . Temperature control of heat-sealing of multi-function packaging machine based on RBF-PID[J]. Manufacturing Automation, 2018, 40(1): 16-20. | |
11 | 郑太雄, 潘松, 李永福,等 . 基于黑箱模型和RBF-PID的HCCI发动机燃烧正时控制[J]. 仪器仪表学报, 2015, 36(11): 2510-2518. |
Zheng T X , Pan S , Li Y F , et al . Combustion timing control of homogeneous charge compression ignition engine based on RBF-PID and black-box model[J]. Chinese Journal of Scientific Instrument, 2015, 36(11): 2510-2518. | |
12 | Lionel L S , Godpromesse K , Andrew M F . A new static synchronous series compensator control strategy based on RBF neuro-sliding mode technique for power flow control and DC voltage regulation[J]. Electric Power Components and Systems, 2018, 46(4): 456-471. |
13 | Tu W P , Yang Y H , Du B , et al . Towards a real-time production of immersive spatial audio of high individuality with an RBF neural network[J]. Journal of Parallel and Distributed Computing, 2019, 13(1): 124-131. |
14 | Yang H J , Liu J K . An adaptive RBF neural network control method for a class of nonlinear systems[J]. Automatica, 2018, 5(2): 457-462. |
15 | Alireza Z , Afshin T . Utilization of the RBF network to model the nucleate pool boiling heat transfer properties of refrigerant-oil mixtures with nanoparticles[J]. Journal of Molecular Liquids, 2017, 24(7): 252-261. |
16 | Moscoso M , Bayona V , Kindelan M . Gaussian RBF-FD weights and its corresponding local truncation errors[J]. Engineering Analysis with Boundary Elements, 2012, 36(9): 1361-1369. |
17 | 邓凯文, 陈海昕 . 基于差分进化和RBF响应面的混合优化算法[J]. 力学学报, 2017, 49(2): 441-455. |
Deng K W , Chen H X . Hybrid optimization algorithm based on differential evolutio and RBF response surface[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 441-455. | |
18 | 薛晓岑, 向文国, 吕剑虹 . 基于差分进化与 RBF 神经网络的热工过程辨识[J]. 东南大学学报(自然科学版), 2014, (4): 769-774. |
Xue X C , Xiang W G , Lyu J H . Thermal process identification based on differential evolution and RBF neural network[J]. Journal of Southeast University (Natural Science Edition), 2014, (4): 769-774. | |
19 | Ji N , Xu D Z , Liu F . A novel adaptive neural network constrained control for solid oxide fuel cells via dynamic anti-windup[J]. Neurocomputing, 2016, 21(9): 134-142. |
20 | Liu K , Wu Y , Zhu T M , et al . Improved RBF network torque control in flexible manipulator actuated by PMAs[J]. Robotica, 2019, 37(2): 264-280. |
21 | Storn R . On the usage of differential evolution for function optimization[C]//Proceedings of North American Fuzzy Information Processing. Berkeley, CA, USA, 1996. |
22 | Li Y C , Li Z P , Yang L Q , et al . An improved quantum differential evolution algorithm for optimization and control in power systems including DGs[J]. Automatica, 2017, 43(7): 1280-1288. |
23 | Dong Y , Zhao R . Solve train stowage planning problem of steel coil using a pointer-based discrete differential evolution[J]. International Journal of Production Research, 2018, 56(22): 6937-6955. |
24 | Subrat K N , Pravat K R , Alok J , et al . Elitism-based multi-objective differential evolution with extreme learning machine for feature selection: a novel searching technique[J]. Connection Science, 2018, 30(4): 362-387. |
25 | Addawe R C , Addawe J M , Sueño M R K , et al . Differential evolution-simulated annealing for multiple sequence alignment[J]. Journal of Physics: Conference Series, 2017, 8(1): 120-131. |
26 | Ponnuthurai N , Mostafa Z . Population topologies for particle swarm optimization and differential evolution[J]. Swarm and Evolutionary Computation, 2018, 39(4): 24-35. |
27 | 刘金琨 . 先进PID 控制MATLAB 仿真[M]. 北京: 电子工业出版社, 2016: 301-319. |
Liu J K . Advanced PID Control MATLAB Simulation[M]. Beijing: Electronic Industry Press, 2016: 301-319. | |
28 | Bourmaud G , Megret R , Arnaudon M , et al . Continuous-discrete extended Kalman filter on matrix lie groups using concentrated gaussian distributions [J]. Journal of Mathematical Imaging and Vision, 2015, 51(1): 209-228. |
29 | Torabi H , Pariz N , Karimpour A . A novel cubature statistically linearized Kalman filter for fractional-order nonlinear discrete-time stochastic systems[J]. Journal of Vibration and Control, 2018, 24(24): 5880-5897. |
30 | Daniel T , Gary V . Attribution of hedge fund returns using a Kalman filter[J]. Applied Economics, 2018, 50(9): 1043-1058. |
31 | Zhao Y B , Li X F , Wang Y , et al . Biased constrained hybrid Kalman filter for range-based indoor localization[J]. IEEE Sensors Journal, 2018, 18(4): 1647-1655. |
32 | 吴晓明, 马立廷, 郑协, 等 . 改进的RBF神经网络PID 算法在电液伺服系统中应用[J]. 机床与液压, 2015, 43(11): 63-66. |
Wu X M , Ma L T , Zheng X , et al . Improved RBF neural network PID control strategy used in electro-hydraulic servo system[J]. Machine Tool & Hydraulics, 2015, 43(11): 63-66. | |
33 | Xie Y F , Yu J J , Xie S W , et al . On-line prediction of ferrous ion concentration in goethite process based on self-adjusting structure RBF neural network[J]. Neural Networks, 2019, 5(2): 132-141. |
34 | Kwedlo W , Bandurski K . A parallel differential evolution algorithm [C]//Parallel Computing in Electrical Engineering.IEEE, 2006, 12(9): 454-467. |
35 | Sento A , Kitjaidure Y . Neural network controller based on PID using an extended Kalman filter algorithm for multi⁃variable non⁃linear control system [C]//The Eighth International Conference on Advanced Computational Intelligence. Chiang Mai: IEEE, 2016: 302⁃309. |
[1] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[2] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[3] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[4] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[5] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[6] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[7] | 徐野, 黄文君, 米俊芃, 申川川, 金建祥. 多源信息融合的离心式压缩机喘振诊断方法[J]. 化工学报, 2023, 74(7): 2979-2987. |
[8] | 高学金, 姚玉卓, 韩华云, 齐咏生. 基于注意力动态卷积自编码器的发酵过程故障监测[J]. 化工学报, 2023, 74(6): 2503-2521. |
[9] | 黄磊, 孔令学, 白进, 李怀柱, 郭振兴, 白宗庆, 李平, 李文. 油页岩添加对准东高钠煤灰熔融行为影响的研究[J]. 化工学报, 2023, 74(5): 2123-2135. |
[10] | 苏晓丹, 朱干宇, 李会泉, 郑光明, 孟子衡, 李防, 杨云瑞, 习本军, 崔玉. 湿法磷酸半水工艺考察与石膏结晶过程研究[J]. 化工学报, 2023, 74(4): 1805-1817. |
[11] | 贠程, 王倩琳, 陈锋, 张鑫, 窦站, 颜廷俊. 基于社团结构的化工过程风险演化路径深度挖掘[J]. 化工学报, 2023, 74(4): 1639-1650. |
[12] | 吴选军, 王超, 曹子健, 蔡卫权. 数据与物理信息混合驱动的固定床吸附穿透深度学习模型[J]. 化工学报, 2023, 74(3): 1145-1160. |
[13] | 张中秋, 李宏光, 石逸林. 基于人工预测调控策略的复杂化工过程多任务学习方法[J]. 化工学报, 2023, 74(3): 1195-1204. |
[14] | 张江淮, 赵众. 碳三加氢装置鲁棒最小协方差约束控制及应用[J]. 化工学报, 2023, 74(3): 1216-1227. |
[15] | 吴心远, 刘奇磊, 曹博渊, 张磊, 都健. Group2vec:基于无监督机器学习的基团向量表示及其物性预测应用[J]. 化工学报, 2023, 74(3): 1187-1194. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 181
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 441
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||