1 |
刘凤萍 . 电热恒温水浴锅温度场(温度均匀性)测量值的不确定度评定[J]. 计量与测试技术, 2016, 43(1): 84-85.
|
|
Liu F P . Evaluation of uncertainty about measurement results of electric heating constant temperature water-bath temperature uniformity[J]. Metrology & Measurement Technique, 2016, 43(1): 84-85.
|
2 |
王志甄, 邹志云 .电热水浴装置的MPC-PID串级控制研究[J]. 石油化工自动化, 2018, 54(3): 36-40.
|
|
Wang Z Z , Zou Z Y . Research on MPC-PID cascade control of electric-heated water bath device[J]. Automation in Petro-Chemical Industry, 2018, 54(3): 36-40.
|
3 |
Karthikeyan R , Manickavasagam K , Tripathi S , et al . Neuro-fuzzy-based control for parallel cascade control[J]. Chemical Product and Process Modeling, 2013, 8(1): 15-25.
|
4 |
Sakthivel R , Sathishkumar M , Ren Y , et al . Fault-tolerant sampled-data control of singular networked cascade control systems[J]. International Journal of Systems Science, 2017, 48(10): 2079-2090.
|
5 |
Hu Y F , Chen C H , Wu H C , et al . Study on structural optimization design and cascade PID control of maglev actuator for active vibration isolation system[J]. Journal of Vibration and Control, 2018, 24(10): 1829-1847.
|
6 |
Khalil H K . Cascade high-gain observers in output feedback control[J]. Automatica, 2017, 80(4): 110-118.
|
7 |
林巍, 王亚刚 . 串级控制系统闭环辨识及PID参数整定[J]. 控制工程, 2018, 25(1): 11-18.
|
|
Lin W , Wang Y G . Modeling for cascade control systems based on frequency domain and PID parameter tuning[J]. Control Engineering of China, 2018, 25(1): 11-18.
|
8 |
柴杰, 江青茵, 曹志凯 . RBF神经网络的函数逼近能力及其算法[J]. 模式识别与人工智能, 2002, 15(3): 310-316.
|
|
Chai J , Jiang Q Y , Cao Z K . Function approximation capability and algorithms of RBF neural networks[J]. Pattern Recognition and Artificial Intelligence, 2002, 15(3): 310-316.
|
9 |
Behnam T , Fariba Z , Houman Z , et al . Utilization of RBF-ANN as a novel approach for estimation of asphaltene inhibition efficiency[J]. Petroleum Science and Technology, 2018, 36(16): 1216-1221.
|
10 |
丰会萍, 胡亚南, 李明辉, 等 . 基于RBF-PID的多功能包装机热封温度控制[J]. 制造业自动化, 2018, 40(1): 16-20.
|
|
Feng H P , Hu Y N , Li M H , et al . Temperature control of heat-sealing of multi-function packaging machine based on RBF-PID[J]. Manufacturing Automation, 2018, 40(1): 16-20.
|
11 |
郑太雄, 潘松, 李永福,等 . 基于黑箱模型和RBF-PID的HCCI发动机燃烧正时控制[J]. 仪器仪表学报, 2015, 36(11): 2510-2518.
|
|
Zheng T X , Pan S , Li Y F , et al . Combustion timing control of homogeneous charge compression ignition engine based on RBF-PID and black-box model[J]. Chinese Journal of Scientific Instrument, 2015, 36(11): 2510-2518.
|
12 |
Lionel L S , Godpromesse K , Andrew M F . A new static synchronous series compensator control strategy based on RBF neuro-sliding mode technique for power flow control and DC voltage regulation[J]. Electric Power Components and Systems, 2018, 46(4): 456-471.
|
13 |
Tu W P , Yang Y H , Du B , et al . Towards a real-time production of immersive spatial audio of high individuality with an RBF neural network[J]. Journal of Parallel and Distributed Computing, 2019, 13(1): 124-131.
|
14 |
Yang H J , Liu J K . An adaptive RBF neural network control method for a class of nonlinear systems[J]. Automatica, 2018, 5(2): 457-462.
|
15 |
Alireza Z , Afshin T . Utilization of the RBF network to model the nucleate pool boiling heat transfer properties of refrigerant-oil mixtures with nanoparticles[J]. Journal of Molecular Liquids, 2017, 24(7): 252-261.
|
16 |
Moscoso M , Bayona V , Kindelan M . Gaussian RBF-FD weights and its corresponding local truncation errors[J]. Engineering Analysis with Boundary Elements, 2012, 36(9): 1361-1369.
|
17 |
邓凯文, 陈海昕 . 基于差分进化和RBF响应面的混合优化算法[J]. 力学学报, 2017, 49(2): 441-455.
|
|
Deng K W , Chen H X . Hybrid optimization algorithm based on differential evolutio and RBF response surface[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 441-455.
|
18 |
薛晓岑, 向文国, 吕剑虹 . 基于差分进化与 RBF 神经网络的热工过程辨识[J]. 东南大学学报(自然科学版), 2014, (4): 769-774.
|
|
Xue X C , Xiang W G , Lyu J H . Thermal process identification based on differential evolution and RBF neural network[J]. Journal of Southeast University (Natural Science Edition), 2014, (4): 769-774.
|
19 |
Ji N , Xu D Z , Liu F . A novel adaptive neural network constrained control for solid oxide fuel cells via dynamic anti-windup[J]. Neurocomputing, 2016, 21(9): 134-142.
|
20 |
Liu K , Wu Y , Zhu T M , et al . Improved RBF network torque control in flexible manipulator actuated by PMAs[J]. Robotica, 2019, 37(2): 264-280.
|
21 |
Storn R . On the usage of differential evolution for function optimization[C]//Proceedings of North American Fuzzy Information Processing. Berkeley, CA, USA, 1996.
|
22 |
Li Y C , Li Z P , Yang L Q , et al . An improved quantum differential evolution algorithm for optimization and control in power systems including DGs[J]. Automatica, 2017, 43(7): 1280-1288.
|
23 |
Dong Y , Zhao R . Solve train stowage planning problem of steel coil using a pointer-based discrete differential evolution[J]. International Journal of Production Research, 2018, 56(22): 6937-6955.
|
24 |
Subrat K N , Pravat K R , Alok J , et al . Elitism-based multi-objective differential evolution with extreme learning machine for feature selection: a novel searching technique[J]. Connection Science, 2018, 30(4): 362-387.
|
25 |
Addawe R C , Addawe J M , Sueño M R K , et al . Differential evolution-simulated annealing for multiple sequence alignment[J]. Journal of Physics: Conference Series, 2017, 8(1): 120-131.
|
26 |
Ponnuthurai N , Mostafa Z . Population topologies for particle swarm optimization and differential evolution[J]. Swarm and Evolutionary Computation, 2018, 39(4): 24-35.
|
27 |
刘金琨 . 先进PID 控制MATLAB 仿真[M]. 北京: 电子工业出版社, 2016: 301-319.
|
|
Liu J K . Advanced PID Control MATLAB Simulation[M]. Beijing: Electronic Industry Press, 2016: 301-319.
|
28 |
Bourmaud G , Megret R , Arnaudon M , et al . Continuous-discrete extended Kalman filter on matrix lie groups using concentrated gaussian distributions [J]. Journal of Mathematical Imaging and Vision, 2015, 51(1): 209-228.
|
29 |
Torabi H , Pariz N , Karimpour A . A novel cubature statistically linearized Kalman filter for fractional-order nonlinear discrete-time stochastic systems[J]. Journal of Vibration and Control, 2018, 24(24): 5880-5897.
|
30 |
Daniel T , Gary V . Attribution of hedge fund returns using a Kalman filter[J]. Applied Economics, 2018, 50(9): 1043-1058.
|
31 |
Zhao Y B , Li X F , Wang Y , et al . Biased constrained hybrid Kalman filter for range-based indoor localization[J]. IEEE Sensors Journal, 2018, 18(4): 1647-1655.
|
32 |
吴晓明, 马立廷, 郑协, 等 . 改进的RBF神经网络PID 算法在电液伺服系统中应用[J]. 机床与液压, 2015, 43(11): 63-66.
|
|
Wu X M , Ma L T , Zheng X , et al . Improved RBF neural network PID control strategy used in electro-hydraulic servo system[J]. Machine Tool & Hydraulics, 2015, 43(11): 63-66.
|
33 |
Xie Y F , Yu J J , Xie S W , et al . On-line prediction of ferrous ion concentration in goethite process based on self-adjusting structure RBF neural network[J]. Neural Networks, 2019, 5(2): 132-141.
|
34 |
Kwedlo W , Bandurski K . A parallel differential evolution algorithm [C]//Parallel Computing in Electrical Engineering.IEEE, 2006, 12(9): 454-467.
|
35 |
Sento A , Kitjaidure Y . Neural network controller based on PID using an extended Kalman filter algorithm for multi⁃variable non⁃linear control system [C]//The Eighth International Conference on Advanced Computational Intelligence. Chiang Mai: IEEE, 2016: 302⁃309.
|