化工学报 ›› 2019, Vol. 70 ›› Issue (11): 4377-4386.DOI: 10.11949/0438-1157.20190390
收稿日期:
2019-04-16
修回日期:
2019-07-26
出版日期:
2019-11-05
发布日期:
2019-11-05
通讯作者:
张宏伟
作者简介:
郝松泽(1988—),男,博士研究生,基金资助:
Songze HAO1,2(),Hongwei ZHANG1(),Yun WU1,Jie WANG1
Received:
2019-04-16
Revised:
2019-07-26
Online:
2019-11-05
Published:
2019-11-05
Contact:
Hongwei ZHANG
摘要:
双金属催化滤料生物滤池替代传统生物滤池,作为超滤膜系统的预处理工艺,可提高三氮的去除效率,保证产水水质稳定,显著减缓超滤膜污染,延长膜使用寿命。生物催化滤池内催化还原反应促进反硝化系统的进行,保证了水中硝酸氮和亚硝酸氮的分解去除;研究表明,生物催化滤池预处理较常规生物滤池可将TOC的去除率由73.2%提高到81.5%,其增加部分的主要成分为可引起膜污染的芳香蛋白类和富里酸类有机污染物。此外,双金属催化滤料增加了滤池的过滤精度,其出水胶体平均粒径明显小于常规生物滤池。催化还原反应产生的铁离子在过滤紊流的环境中微絮凝,进一步去除了微污染水源水中的胶体和悬浮物,减轻了胶体颗粒对超滤膜的污染。除具有常规滤池的生物降解、过滤作用外,双金属催化滤料生物滤池还具有催化还原和微絮凝的协同作用,显著提高了水中有机污染物和胶体颗粒的去除率,超滤膜污染得到有效减缓。
中图分类号:
郝松泽, 张宏伟, 吴云, 王捷. 双金属催化滤料生物滤池处理效果及对膜污染影响研究[J]. 化工学报, 2019, 70(11): 4377-4386.
Songze HAO, Hongwei ZHANG, Yun WU, Jie WANG. Study on treatment of biological catalytic filter and membrane fouling with bimetallic catalyst as filter media[J]. CIESC Journal, 2019, 70(11): 4377-4386.
Water quality index | Value |
---|---|
NH4+-N/(mg·L-1) | 3.58 |
NO3--N/(mg·L-1) | 3.59 |
NO2--N/(mg·L-1) | 0.089 |
TOC/(mg·L-1) | 5.56 |
UV254/ cm-1 | 0.074 |
turbidity/ NTU | 6.64 |
Fe3+/(mg·L-1) | 0.14 |
pH | 7.25 |
temperature/℃ | 21.5 |
表1 原水水质
Table 1 Quality indexes of raw water
Water quality index | Value |
---|---|
NH4+-N/(mg·L-1) | 3.58 |
NO3--N/(mg·L-1) | 3.59 |
NO2--N/(mg·L-1) | 0.089 |
TOC/(mg·L-1) | 5.56 |
UV254/ cm-1 | 0.074 |
turbidity/ NTU | 6.64 |
Fe3+/(mg·L-1) | 0.14 |
pH | 7.25 |
temperature/℃ | 21.5 |
Water quality index | Original process | Improved process | ||
---|---|---|---|---|
Biological filter | UF permeate | Biological catalytic filter | UF permeate | |
NH4+-N/(mg·L-1) | 0.93 | 0.93 | 0.5 | 0.5 |
NO3--N/(mg·L-1) | 7.08 | 7.08 | 1.3 | 1.3 |
NO2--N/(mg·L-1) | 0.108 | 0.108 | 0.009 | 0.009 |
TOC/(mg·L-1) | 1.49 | 1.32 | 1.03 | 0.41 |
UV254/cm-1 | 0.062 | 0.036 | 0.043 | 0.028 |
turbidity/NTU | 3.48 | 0.25 | 2.15 | 0.23 |
Fe/(mg·L-1) | 0.14 | 0.14 | 0.25 | 0.13 |
表2 工艺改进前后各工艺段产水水质指标
Table 2 Water quality indexes of each process
Water quality index | Original process | Improved process | ||
---|---|---|---|---|
Biological filter | UF permeate | Biological catalytic filter | UF permeate | |
NH4+-N/(mg·L-1) | 0.93 | 0.93 | 0.5 | 0.5 |
NO3--N/(mg·L-1) | 7.08 | 7.08 | 1.3 | 1.3 |
NO2--N/(mg·L-1) | 0.108 | 0.108 | 0.009 | 0.009 |
TOC/(mg·L-1) | 1.49 | 1.32 | 1.03 | 0.41 |
UV254/cm-1 | 0.062 | 0.036 | 0.043 | 0.028 |
turbidity/NTU | 3.48 | 0.25 | 2.15 | 0.23 |
Fe/(mg·L-1) | 0.14 | 0.14 | 0.25 | 0.13 |
1 | 王熹, 王湛, 杨文涛, 等. 中国水资源现状及其未来发展方向展望 [J]. 环境工程, 2014, 32(7): 1-5. |
WangX, WangZ, YangW T, et al. Shortage of water resources in China and countermeasures [J]. Environmental Engineering, 2014, 32(7): 1-5. | |
2 | 张燕, 郑国兴, 查人光, 等. 高氨氮和高有机物污染河网原水组合处理技术集成与示范 [J]. 给水排水, 2013, 39(3): 17-20. |
ZhangY, ZhengG X, ZhaR G, et al. Integration and demonstration of combined treatment technology of raw water in river network with high ammonia nitrogen and high organics pollution [J].Water & Wastewater Engineering, 2013, 39(3): 17-20. | |
3 | 张欣然, 李伟光, 公绪金, 等. 紫外/氯耦合处理饮用水中氨氮的响应面优化 [J]. 化工学报, 2014, 65(3): 1049-1055. |
ZhangX R, LiW G, GongX J, et al. Optimization on combined UV/chlorine process for remove of ammonia drinking water [J]. CIESC Journal, 2014, 65(3): 1049-1055. | |
4 | 杨威, 田家宇, 李圭白. 生物活性滤池饮用水除氨氮的影响因素 [J]. 化工学报, 2008, 59(9): 2316-2321. |
YangW, TianJ Y, LiG B. Factors influencing ammonia removal of biological activated filter in drinking water treatment [J]. Journal of Chemical Industry and Engineering(China), 2008, 59(9): 2316-2321. | |
5 | NakatsukaS, NakateI, MiyanoT. Drinking water treatment by using ultrafiltration hollow fiber membranes [J]. Desalination, 1996, 106(1): 55-61. |
6 | NovotnyV, WangX Y, EnglandeA J, et al. Comparative assessment of pollution by the use of industrial agricultural fertilizers in four rapidly developing Asian countries [J]. Environment Development & Sustainability, 2010, 12(4): 491-509. |
7 | ChoM H, LeeC H, LeeS. Effect of flocculation conditions on membrane permeability in coagulation–microfiltration [J]. Desalination, 2006, 191(1): 386-396. |
8 | ChewC M, ArouaM K, HussainM A. Advanced process control for ultrafiltration membrane water treatment system [J]. Journal of Cleaner Production, 2018, 179: 63-80. |
9 | Mosqueda-jimenezD B, HuckP M, BasuO D. Fouling characteristics of an ultrafiltration membrane used in drinking water treatment [J]. Desalination, 2008, 230(1): 79-91. |
10 | CarrollT, KingS, GrayS R, et al. The fouling of microfiltration membranes by NOM after coagulation treatment [J]. Water Research, 2000, 34(11): 2861-2868. |
11 | GuoY, BaiL, TangX, et al. Coupling continuous sand filtration to ultrafiltration for drinking water treatment: improved performance and membrane fouling control [J]. Journal of Membrane Science, 2018, 567: 18-27. |
12 | 曹伟奎. 曝气生物滤池耦合超滤工艺处理山区水库水的试验研究 [D]. 青岛: 青岛理工大学, 2018. |
CaoW K. Experimental study on the treatment of reservoir water by aerated biological filter coupled with ultrafiltration [D]. Qingdao: Qingdao University of Technology, 2018. | |
13 | 张晓岚, 李玉仙, 柴文, 等. 炭砂过滤单元对超滤膜阻力的影响研究 [J]. 中国给水排水, 2016, 32(21): 45-49. |
ZhangX L, LiY X, CaiW, et al. Effect of sand-carbon filtration on performance of ultrafiltration membrane in drinking water production [J]. China Water&Wastewater, 2016, 32(21): 45-49. | |
14 | 王永磊, 李军, 张克峰, 等. 炭砂双层滤料浮滤池工艺处理藻污染水库水的试验研究 [J]. 化工学报, 2014, 65(6): 2335-2343. |
WangY L, LiJ, ZhangK F, et al. Experimental research on treating reservoir water contaminated by algae using GAC-sand dual media filter biofilter [J]. CIESC Journal, 2014, 65(6): 2335-2343. | |
15 | NetcherA C, DuranceauS J. Modeling the improvement of ultrafiltration membrane mass transfer when using biofiltration pretreatment in surface water applications [J]. Water Research, 2016, 90: 258-264. |
16 | ZhangY, ZhaoX, ZhangX, et al. The change of NOM in a submerged UF membrane with three different pretreatment processes compared to an individual UF membrane [J]. Desalination, 2015, 360: 118-129. |
17 | 崔志广, 刘彩彩, 关晶, 等. 沸石生物滤池/混凝沉淀/超滤工艺处理微污染源水 [J]. 中国给水排水, 2010, 26(7): 34-36. |
CuiZ G, LiuC C, GuanJ, et al. Combined process of zeolite biofilter coagulation sedimentation and ultrafiltration for treatment of micro-polluted source water [J]. China Water&Wastewater, 2010, 26(7): 34-36. | |
18 | 刘冰, 于鑫, 富良, 等. 饮用水系统中生物滤池性能的研究 [J]. 中国给水排水, 2010, 26(21): 72-74. |
LiuB, YuX, FuL, et al. Study on performance of drinking water biofilter [J]. China Water&Wastewater, 2010, 26(21): 72-74. | |
19 | 陈义春.陶瓷滤料表面改性及其预处理微污染水的试验研究[D]. 武汉: 武汉理工大学, 2007. |
ChenY C. Experimental study on surface modification of ceramic filter material and its pretreatment of micro-polluted water[D]. Wuhan: Wuhan University of Technology, 2007. | |
20 | 朱群淑.改性滤料在生物慢滤装置中处理水窖水的实验研究[D]. 兰州: 兰州交通大学, 2014. |
ZhuQ S. The experimental study of modified filter media for cellar water treatment using biology slow filtering techniques[D]. Lanzhou: Lanzhou Jiaotong University, 2014. | |
21 | 杨翾.铁铜氧化物复合改性石英砂滤料制备工艺与吸附特性研究[D]. 广州: 广东工业大学, 2016. |
YangH. Study on the preparation process and adsorption characteristic of Fe/Cu oxide composite modified quartz sand[D]. Guangzhou: Guangdong University of Technology, 2016. | |
22 | BarrabésN, DafinovA, MedinaF, et al. Catalytic reduction of nitrates using Pt/CeO2 catalysts in a continuous reactor [J]. Catalysis Today, 2010, 149(3): 341-347. |
23 | HaoS, ZhangH. High catalytic performance of nitrate reduction by synergistic effect of zero-valent iron(Fe0) and bimetallic composite carrier catalyst [J]. Journal of Cleaner Production, 2017, 26: 192-200. |
24 | SaadaR, KelliciS, HeilT, et al. Greener synthesis of dimethyl carbonate using a novel ceria–zirconia oxide/graphene nanocomposite catalyst [J]. Applied Catalysis B Environmental, 2015, 168/169: 353-362. |
25 | GarronA, LázárK, EpronF. Effect of the support on tin distribution in Pd–Sn/Al2 O3 and Pd–Sn/SiO2 catalysts for application in water denitration [J]. Applied Catalysis B Environmental, 2005, 59(1/2): 57-69. |
26 | MaB, XueW, LiW, et al. Integrated Fe-based floc-membrane process for alleviating ultrafiltration membrane fouling by humic acid and reservoir water [J]. Journal of Membrane Science, 2018, 563: 873-881. |
27 | HuangH, SpinetteR, O’MeliaC R. Direct-flow microfiltration of aquasols(I): Impacts of particle stabilities and size[J]. Journal of Membrane Science, 2008, 314(1/2): 90-100. |
28 | PeldszusS, HalléC, PeirisR H, et al. Reversible and irreversible low-pressure membrane foulants in drinking water treatment: identification by principal component analysis of fluorescence EEM and mitigation by biofiltration pretreatment [J]. Water Research, 2011, 45(16): 5161-5170. |
29 | CarsteaE M, BakerA, BierozaM, et al. Continuous fluorescence excitation-emission matrix monitoring of river organic matter [J]. Water Research, 2010, 44(18): 5356. |
30 | LyQ V, KimH C, HurJ. Tracking fluorescent dissolved organic matter in hybrid ultrafiltration systems with TiO2/UV oxidation via EEM-PARAFAC [J]. Journal of Membrane Science, 2018, 549: 275-282. |
31 | TangC, HeZ, ZhaoF, et al. Effects of cations on the formation of ultrafiltration membrane fouling layers when filtering fulvic acid [J]. Desalination, 2014, 352: 174-180. |
32 | XiaoP, XiaoF, WangD S, et al. Investigation of organic foulants behavior on hollow-fiber UF membranes in a drinking water treatment plant [J]. Separation and Purification Technology, 2012, 95: 109-117. |
33 | 罗晓鸿, 曹莉莉, 王占生. 不同分子量的有机物在净水工艺中的去除研究 [J]. 中国环境科学, 1998, 18(4): 54-57. |
LuoX H, CaoL L, WangZ S. Study on the removal of different molecular-weight organics by water purification process [J]. China Environmental Science, 1998, 18(4): 54-57. | |
34 | LinC F, HuangY J, HaoO J. Ultrafiltration processes for removing humic substances: effect of molecular weight fractions and PAC treatment [J]. Water Research, 1999, 33(5): 1252-1264. |
[1] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[2] | 李鑫, 曾少娟, 彭奎霖, 袁磊, 张香平. CO2电催化还原制合成气研究进展及趋势[J]. 化工学报, 2023, 74(1): 313-329. |
[3] | 孙敏, 贾辉, 秦卿雯, 王琦, 郭子楠, 罗艳茹, 王捷. 电阻抗成像原位在线监测超滤膜污染行为研究[J]. 化工学报, 2022, 73(4): 1754-1762. |
[4] | 王保文, 张港, 刘同庆, 李炜光, 王梦家, 林德顺, 马晶晶. CeO2/CuFe2O4氧载体CH4化学链重整耦合CO2热催化还原研究[J]. 化工学报, 2022, 73(12): 5414-5426. |
[5] | 张兰河, 汪露, 李梓萌, 唐宏, 郭静波, 贾艳萍, 张明爽. 电极超滤膜生物反应器处理阴离子表面活性剂废水[J]. 化工学报, 2022, 73(10): 4679-4691. |
[6] | 单良, 尹荣强, 王慧, 费传军, 周清清, 徐杰, 王志强, 徐涛, 陈建军, 李俊华. VMoTi/玻纤复合催化滤布制备及其除尘协同脱硝性能研究[J]. 化工学报, 2021, 72(9): 4892-4899. |
[7] | 李泽严, 樊星, 李坚. 非热等离子体强化TiO2催化尿素分解副产物水解性能的研究[J]. 化工学报, 2021, 72(9): 4698-4707. |
[8] | 邱爽, 肖永厚, 刘建辉, 贺高红. 一步法制备高活性NH3-SCR催化剂Cu-SAPO-34:Si含量的影响[J]. 化工学报, 2021, 72(5): 2578-2585. |
[9] | 王开珍, 王书浩, 李韵浩, 周勇, 高从堦. 原位合成法制备高通量聚砜超滤膜及其性能研究[J]. 化工学报, 2021, 72(3): 1712-1721. |
[10] | 张芳芳, 韩敏, 赵娟, 凌丽霞, 章日光, 王宝俊. 单空缺石墨烯负载的Pd单原子催化剂上NO还原的密度泛函理论研究[J]. 化工学报, 2021, 72(3): 1382-1391. |
[11] | 史玉婷, 皇甫林, 李长明, 王月, 高士秋, 伞晓广, 韩振南, 余剑. V2O5-MoO3/TiO2催化滤袋的制备及中试应用[J]. 化工学报, 2021, 72(11): 5598-5606. |
[12] | 王文广, 谭明, 孙小寒, 杨兴涛, 张晓东, 张杨, 赵洪武. 基于海水淡化中试的超滤膜清洗工艺及机理[J]. 化工学报, 2020, 71(S2): 289-296. |
[13] | 刘涛, 张书廷. Ba、Co共掺MnOx复合氧化物低温选择性催化还原NO研究[J]. 化工学报, 2020, 71(7): 3106-3113. |
[14] | 蔡媛媛,郭百涛,邢卫红,高从堦. 面向健康产业应用需求的膜技术与膜材料[J]. 化工学报, 2020, 71(7): 2921-2932. |
[15] | 杨通, 何小波, 银凤翔. M-MOF-74(M=Ni, Co, Zn)的制备及其电化学催化合成氨性能[J]. 化工学报, 2020, 71(6): 2857-2870. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||