化工学报 ›› 2020, Vol. 71 ›› Issue (7): 2921-2932.DOI: 10.11949/0438-1157.20191557
收稿日期:
2019-12-20
修回日期:
2020-04-07
出版日期:
2020-07-05
发布日期:
2020-07-05
通讯作者:
邢卫红
作者简介:
蔡媛媛(1988—),女,博士,中级工程师,基金资助:
Yuanyuan CAI1(),Baitao GUO1,2,Weihong XING2(),Congjie GAO3
Received:
2019-12-20
Revised:
2020-04-07
Online:
2020-07-05
Published:
2020-07-05
Contact:
Weihong XING
摘要:
健康产业发展潜力巨大,其中,医药、医疗和保健行业占有重要地位,但其面临医药资源利用率低、生产工艺污染严重、高端产品依赖进口、质量标准体系不完善等制约因素。将膜分离技术应用于医药、医疗和保健行业,解决发展面临的诸多问题,对于推进我国健康产业发展将发挥重要作用。鉴于国内外尚无针对膜技术应用于健康产业进展的相关文献报道,本文针对面向健康产业应用的膜技术及膜材料进展进行了综述,探讨了健康产业应用对膜材料提出的要求及标准,重点研究了微滤、超滤、反渗透、纳滤、膜生物反应器、渗透汽化、气体分离、人工脏器等膜材料现状,分析了制约其发展的关键问题并提出相关建议,以期为相关部门及行业人员提供参考。
中图分类号:
蔡媛媛,郭百涛,邢卫红,高从堦. 面向健康产业应用需求的膜技术与膜材料[J]. 化工学报, 2020, 71(7): 2921-2932.
Yuanyuan CAI,Baitao GUO,Weihong XING,Congjie GAO. Progress research on development of membrane technology and materials for health industry[J]. CIESC Journal, 2020, 71(7): 2921-2932.
图2 近10年不同膜技术在健康产业发表SCI文章数量分布
Fig.2 Distribution diagram of number of SCI papers published in application in health field with different membrane technologies during nearly 10 years
膜技术类型 | 排名第1 | 排名第2 | 排名第3 | 排名第4 | 排名第5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
国家 | 数量/篇 | 国家 | 数量/篇 | 国家 | 数量/篇 | 国家 | 数量/篇 | 国家 | 数量/篇 | |
微滤 | 中国 | 557 | 美国 | 299 | 韩国 | 194 | 澳大利亚 | 119 | 日本 | 119 |
超滤 | 中国 | 1143 | 美国 | 477 | 印度 | 263 | 西班牙 | 231 | 韩国 | 226 |
纳滤 | 中国 | 671 | 美国 | 437 | 韩国 | 205 | 西班牙 | 166 | 印度 | 165 |
反渗透 | 美国 | 686 | 中国 | 523 | 韩国 | 348 | 澳大利亚 | 308 | 西班牙 | 244 |
膜生物反应器 | 中国 | 831 | 美国 | 257 | 澳大利亚 | 231 | 西班牙 | 192 | 韩国 | 188 |
膜接触器 | 美国 | 341 | 中国 | 323 | 澳大利亚 | 110 | 韩国 | 104 | 德国 | 100 |
气体分离 | 美国 | 98 | 中国 | 71 | 波兰 | 27 | 德国 | 21 | 日本 | 20 |
渗透汽化 | 中国 | 546 | 美国 | 154 | 印度 | 149 | 日本 | 92 | 伊朗 | 87 |
液膜 | 中国 | 69 | 伊朗 | 49 | 波兰 | 43 | 印度 | 38 | 意大利 | 37 |
工业用渗析 | 中国 | 204 | 美国 | 113 | 法国 | 75 | 俄罗斯 | 70 | 加拿大 | 65 |
人工脏器 | 美国 | 1226 | 日本 | 576 | 德国 | 555 | 意大利 | 493 | 法国 | 378 |
控制释放 | 中国 | 586 | 美国 | 513 | 印度 | 247 | 德国 | 142 | 日本 | 133 |
表1 各国家近10年不同膜技术在健康领域应用SCI文章发表数量分布
Table 1 Quantitative distribution of SCI papers published by different contries of which application in health field with different membrane technologies during nearly 10 years
膜技术类型 | 排名第1 | 排名第2 | 排名第3 | 排名第4 | 排名第5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
国家 | 数量/篇 | 国家 | 数量/篇 | 国家 | 数量/篇 | 国家 | 数量/篇 | 国家 | 数量/篇 | |
微滤 | 中国 | 557 | 美国 | 299 | 韩国 | 194 | 澳大利亚 | 119 | 日本 | 119 |
超滤 | 中国 | 1143 | 美国 | 477 | 印度 | 263 | 西班牙 | 231 | 韩国 | 226 |
纳滤 | 中国 | 671 | 美国 | 437 | 韩国 | 205 | 西班牙 | 166 | 印度 | 165 |
反渗透 | 美国 | 686 | 中国 | 523 | 韩国 | 348 | 澳大利亚 | 308 | 西班牙 | 244 |
膜生物反应器 | 中国 | 831 | 美国 | 257 | 澳大利亚 | 231 | 西班牙 | 192 | 韩国 | 188 |
膜接触器 | 美国 | 341 | 中国 | 323 | 澳大利亚 | 110 | 韩国 | 104 | 德国 | 100 |
气体分离 | 美国 | 98 | 中国 | 71 | 波兰 | 27 | 德国 | 21 | 日本 | 20 |
渗透汽化 | 中国 | 546 | 美国 | 154 | 印度 | 149 | 日本 | 92 | 伊朗 | 87 |
液膜 | 中国 | 69 | 伊朗 | 49 | 波兰 | 43 | 印度 | 38 | 意大利 | 37 |
工业用渗析 | 中国 | 204 | 美国 | 113 | 法国 | 75 | 俄罗斯 | 70 | 加拿大 | 65 |
人工脏器 | 美国 | 1226 | 日本 | 576 | 德国 | 555 | 意大利 | 493 | 法国 | 378 |
控制释放 | 中国 | 586 | 美国 | 513 | 印度 | 247 | 德国 | 142 | 日本 | 133 |
1 | 张车伟, 宋福兴, 王桥, 等. 大健康产业蓝皮书:中国大健康产业发展报告(2018)[M]. 北京: 社会科学文献出版社, 2018. |
Zhang C W, Song F X, Wang Q, et al. Book of Big Health Industry: Development Report on Big Health Industry of China(2018)[M]. Beijing: Social Sciences Academic Press, 2018. | |
2 | 国家药典委员会. 中华人民共和国药典(2005版)[M]. 北京: 化学工业出版社, 2005. |
China Pharmacopoeia Committee. Pharmacopoeia of the People s Republic of China (2005 Edition)[M]. Beijing: Chemical Industry Press, 2005. | |
3 | 国家药典委员会. 中华人民共和国药典(2015版)[M]. 北京: 中国医药科技出版社, 2015. |
China Pharmacopoeia Committee. Pharmacopoeia of the People s Republic of China (2015 Edition)[M]. Beijing: China Medical Science Press, 2015. | |
4 | 国家药典委员会. 中华人民共和国药典(2010版)[M]. 北京: 中国医药科技出版社, 2010. |
China Pharmacopoeia Committee. Pharmacopoeia of the People s Republic of China (2010 Edition)[M]. Beijing: China Medical Science Press, 2010. | |
5 | Verma V K, Subbiah S.Sericin-coated polymeric microfiltration membrane for removal of drug-based micropollutants[J]. Journal of Chemical Technology and Biotechnology, 2019, 94(11): 3625-3636. |
6 | 孙晓博, 章安康, 张宇峰, 等. CA/PSf共混超滤膜的制备及性能研究[J]. 膜科学与技术, 2018, 38(2): 9-16. |
Sun X B, Zhang A K, Zhang Y F, et al. Preparation and properties of CA/PSf blend ultrafiltration membrane[J]. Membrane Science and Technology, 2018, 38(2): 9-16. | |
7 | Wu X, Xie Z, Wang H, et al. Improved filtration performance and antifouling properties of polyethersulfone ultrafiltration membranes by blending with carboxylic acid functionalized polysulfone[J]. RSC Advances, 2018, 8(14): 7774-7784. |
8 | Wu C, Wang Z, Liu S, et al. Simultaneous permeability, selectivity and antibacterial property improvement of PVC ultrafiltration membranes via in-situ quaternization[J]. Journal of Membrane Science, 2018, 548: 50-58. |
9 |
Wang S, Li T, Chen C, et al. PVDF ultrafiltration membranes of controlled performance via blending PVDF-g-PEGMA copolymer synthesized under different reaction times[J]. Frontiers of Environmental Science and Engineering, 2018, 12(2). doi:10.1007/s11783-017-0980-0.
DOI URL |
10 | Xie M, Huan G, Xia W, et al. Preparation and performance optimization of PVDF anti-fouling membrane modified by chitin[J]. Journal of Polymer Engineering, 2018, 38(2): 179-186. |
11 | Zhong D, Wang Z, Lan Q, et al. Selective swelling of block copolymer ultrafiltration membranes for enhanced water permeability and fouling resistance[J]. Journal of Membrane Science, 2018, 558: 106-112. |
12 | Wang Z, Liu R, Lan Q, et al. Selective swelling blends of block copolymers for nanoporous membranes with enhanced permeability and robustness[J]. Journal of Polymer Science Part B-Polymer Physics, 2017, 55(21): 1617-1625. |
13 | Modi A, Bellare J. Efficient separation of biological macromolecular proteins by polyethersulfone hollow fiber ultrafiltration membranes modified with Fe3O4 nanoparticles-decorated carboxylated graphene oxide nanosheets[J]. International Journal of Biological Macromolecules, 2019, 135: 798-807. |
14 | Pang R, Zhang K. A facile and viable approach to fabricate polyamide membranes functionalized with graphene oxide nanosheets[J]. RSC Advances, 2017, 7(84): 53463-53471. |
15 | Shi M, Wang Z, Zhao S, et al. A novel pathway for high performance RO membrane: preparing active layer with decreased thickness and enhanced compactness by incorporating tannic acid into the support[J]. Journal of Membrane Science, 2018, 555: 157-168. |
16 | Pang R, Zhang K. Fabrication of hydrophobic fluorinated silica-polyamide thin film nanocomposite reverse osmosis membranes with dramatically improved salt rejection[J]. Journal of Colloid and Interface Science, 2018, 510: 127-132. |
17 | Zhao Y, Zhang Z, Dai L, et al. Preparation of high water flux and antifouling RO membranes using a novel diacyl chloride monomer with a phosphonate group[J]. Journal of Membrane Science, 2017, 536: 98-107. |
18 | Wei X, Bao X, Wu J, et al. Typical pharmaceutical molecule removal behavior from water by positively and negatively charged composite hollow fiber nanofiltration membranes[J]. RSC Advances, 2018, 8(19): 10396-10408. |
19 | Wang J J, Yang H C, Wu M B, et al. Nanofiltration membranes with cellulose nanocrystals as an interlayer for unprecedented performance[J]. Journal of Materials Chemistry A, 2018, 6(33): 16274-16274. |
20 | Wang Z, Wang Z, Lin S, et al. Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination[J]. Nature Communications, 2018, 9(1): 2004. |
21 | Meng N, Zhao W, Shamsaei E, et al. A low-pressure GO nanofiltration membrane crosslinked via ethylenediamine[J]. Journal of Membrane Science, 2018, 548: 363-371. |
22 | Guo X, Liu D, Han T, et al. Preparation of thin film nanocomposite membranes with surface modified MOF for high flux organic solvent nanofiltration[J]. AIChE Journal, 2017, 63(4): 1303-1312. |
23 | Zhu L, Yu H, Zhang H, et al. Mixed matrix membranes containing MIL-53(Al) for potential application in organic solvent nanofiltration[J]. RSC Advances, 2015, 5(89): 73068-73076. |
24 | Yang Y, Zhang Q, Li S, et al. Preparation and characterization of porous polyelectrolyte complex membranes for nanofiltration[J]. RSC Advances, 2015, 5(5): 3567-3573. |
25 | Lv J L, Zhang G Q, Zhang H M, et al. Graphene oxide-cellulose nanocrystal (GO-CNC) composite functionalized PVDF membrane with improved antifouling performance in MBR: behavior and mechanism[J]. Chemical Engineering Journal, 2018, 352: 765-773. |
26 | Li N, Zhang J, Tian Y, et al. Anti-fouling potential evaluation of PVDF membranes modified with ZnO against polysaccharide[J]. Chemical Engineering Journal, 2016, 304: 165-174. |
27 | Lee X J, Show P L, Katsuda T, et al. Surface grafting techniques on the improvement of membrane bioreactor: state-of-the-art advances[J]. Bioresource Technology, 2018, 269: 489-502. |
28 | Xie W Y, Li J, Sun T T, et al. Hydrophilic modification and anti-fouling properties of PVDF membrane via in situ nano-particle blending[J]. Environmental Science and Pollution Research, 2018, 25(25): 25227-25242. |
29 | Xue S, Li C, Li J, et al. A catechol-based biomimetic strategy combined with surface mineralization to enhance hydrophilicity and anti-fouling property of PTFE flat membrane[J]. Journal of Membrane Science, 2017, 524: 409-418. |
30 | Li C, Wang F, Zhu H, et al. Study on hydrophilic modification and separation performance of PTFE flat membrane by polyacrylic acid post-crosslinked with bisaminoorganosilicone[J]. Membrane Science and Technology, 2018, 38(3): 83-90. |
31 | Song H, Yu H, Zhu L, et al. Durable hydrophilic surface modification for PTFE hollow fiber membranes[J]. Reactive and Functional Polymers, 2017, 114: 110-117. |
32 | Jeong Y, Kim Y, Jin Y, et al. Comparison of filtration and treatment performance between polymeric and ceramic membranes in anaerobic membrane bioreactor treatment of domestic wastewater[J]. Separation and Purification Technology, 2018, 199: 182-188. |
33 | Nguyen P Y, Silva A F, Reis A C, et al. Bioaugmentation of membrane bioreactor with Achromobacter denitrificans strain PR1 for enhanced sulfamethoxazole removal in wastewater[J]. Science of the Total Environment, 2019, 648: 44-55. |
34 | Sun G R, Zhang C Y, Li W, et al. Effect of chemical dose on phosphorus removal and membrane fouling control in a UCT-MBR[J]. Frontiers of Environmental Science and Engineering, 2019, 13(1): 11. |
35 | Song D, Zhang W, Liu C, et al. Development of a novel anoxic/oxic fed-batch membrane bioreactor (AFMBR) based on gravity-driven and partial aeration modes: a pilot scale study[J]. Bioresource Technology, 2018, 270: 255-262. |
36 | Zhou C, Zhou J, Huang A. Seeding-free synthesis of zeolite FAU membrane for seawater desalination by pervaporation[J]. Microporous and Mesoporous Materials, 2016, 234: 377-383. |
37 | Pan S, Meng X, Wang Z, et al. An efficient synthesis of NaA zeolite membranes from direct crystallization of gel-dipped macroporous alumina tubes with seeds[J]. Journal of Materials Chemistry A, 2018, 6(22): 10484-10489. |
38 | Wang R, Ma N, Yan Y, et al. Ultrasonic-assisted fabrication of high flux T-type zeolite membranes on alumina hollow fibers[J]. Journal of Membrane Science, 2018, 548: 676-684. |
39 | Zhu Z, Hu D, Liu Y, et al. Three-component mixed matrix organic/inorganic hybrid membranes for pervaporation separation of ethanol-water mixture[J]. Journal of Applied Polymer Science, 2017, 134: 44753. |
40 | Zhou H, Zhang J, Wan Y, et al. Fabrication of high silicalite-1 content filled PDMS thin composite pervaporation membrane for the separation of ethanol from aqueous solutions[J]. Journal of Membrane Science, 2017, 524: 1-11. |
41 | Yi S, Wan Y. Volatile organic compounds (VOCs) recovery from aqueous solutions via pervaporation with vinyltriethoxysilane-grafted-silicalite-1/polydimethylsiloxane mixed matrix membrane[J]. Chemical Engineering Journal, 2017, 313: 1639-1646. |
42 | Zheng P, Zhang P, Sun Z, et al. Nanostructured polyelectrolyte-surfactant complex pervaporation membranes for ethanol recovery: the relationship between the membrane structure and separation performance[J]. Chinese Journal of Polymer Science, 2018, 36(1): 25-33. |
43 | Yu S, Jiang Z, Yang S, et al. Highly swelling resistant membranes for model gasoline desulfurization[J]. Journal of Membrane Science, 2016, 514: 440-449. |
44 | Yu S, Jiang Z, Li W, et al. Elevated performance of hybrid membranes by incorporating metal organic framework CuBTC for pervaporative desulfurization of gasoline[J]. Chemical Engineering and Processing, 2018, 123: 12-19. |
45 | Liu G, Zhou T, Liu W, et al. Enhanced desulfurization performance of PDMS membranes by incorporating silver decorated dopamine nanoparticles[J]. Journal of Materials Chemistry A, 2014, 2(32): 12907-12917. |
46 | Xu H, Jin W, Wang F, et al. Preparation and properties of PTFE hollow fiber membranes for the removal of ultrafine particles in PM2.5 with repetitive usage capability[J]. RSC Advances, 2018, 8(67): 38245-38258. |
47 | Jian H, Bin Y, Xu G, et al. Effect of PTFE latex coating and PTFE membrane covering on properties of PPS filter materials[J]. Rare Metal Materials and Engineering, 2012, 41: 292-295. |
48 | Xu Q, Yang Y, Wang X, et al. Atomic layer deposition of alumina on porous polytetrafluoroethylene membranes for enhanced hydrophilicity and separation performances[J]. Journal of Membrane Science, 2012, 415: 435-443. |
49 | Luo Y, Li C, Wang J, et al. One-step catechol-based biomimetic strategy to fabricate organic-inorganic hybrid coatings on PTFE flat membrane for the improvement of hydrophilicity and fouling resistance[J]. Desalination and Water Treatment, 2018, 120: 31-40. |
50 | Wei W, Sun M, Zhang L, et al. Underwater oleophobic PTFE membrane for efficient and reusable emulsion separation and the influence of surface wettability and pore size[J]. Separation and Purification Technology, 2017, 189: 32-39. |
51 | Feng S, Li D, Low Z, et al. ALD-seeded hydrothermally-grown Ag/ZnO nanorod PTFE membrane as efficient indoor air filter[J]. Journal of Membrane Science, 2017, 531: 86-93. |
52 | Feng S, Zhong Z, Zhang F, et al. Amphiphobic polytetrafluoroethylene membranes for efficient organic aerosol removal[J]. ACS Applied Materials & Interfaces, 2016, 8(13): 8773-8781. |
53 | Zhong Z, Xu Z, Sheng T, et al. Unusual air filters with ultrahigh efficiency and antibacterial functionality enabled by ZnO nanorods[J]. ACS Applied Materials & Interfaces, 2015, 7(38): 21538-21544. |
54 | Vallejos F, Coudert F, Kaneko K. Air separation with graphene mediated by nanowindow-rim concerted motion[J]. Nature Communications, 2018, 9(1): 1812. |
55 | Ivanov M, Storozhuk I, Dibrov G, et al. Fabrication of hollow fiber membrane from polyarylate-polyarylateblock copolymer for air separation[J]. Petroleum Chemistry, 2018, 58(4): 289-295. |
56 | Ye P, Sjoberg E, Hedlund J. Air separation at cryogenic temperature using MFI membranes[J]. Microporous and Mesoporous Materials, 2014, 192: 14-17. |
57 | Chong K, Lai S, Lau W, et al. Fabrication and characterization of polysulfonemembranes coated with polydimethysiloxane for oxygen enrichment[J]. Aerosol and Air Quality Research, 2017, 17(11): 2735-2742. |
58 | Chen K, Zhao H, Tan X. Preparation of high-flux PDMS/PSf composite membrane for oxygen enrichment[J]. Membrane Science and Technology, 2016, 36(3): 86-92. |
59 | An K, Fan H, Dong Y, et al. Preparation of environment-friendly oxygen-rich silicone rubber membrane[J]. Membrane Science and Technology, 2013, 33(3): 54-58. |
60 | 赵长生, 赵伟锋, 张翔, 等. 新型血液净化材料及佩戴式人工肾的研究构想和预期成果展望[J]. 工程科学与技术, 2018, 50(1): 1-8. |
Zhao C S, Zhao W F, Zhang X, et al. Research framework and anticipated results of novel blood purification materials and wearable artificial kidney[J]. Advanced Engineering Sciences, 2018, 50(1): 1-8. | |
61 | 郭锐, 贾凌云, 冯红芹, 等. 医用血液净化材料的发展现状及研究进展[J]. 中国血液净化, 2004, 3(1): 43-47. |
Guo R, Jia L Y, Feng H Q, et al. Development and progress of medical blood purification materials[J]. Chinese Journal of Blood Purification, 2004, 3(1): 43-47. | |
62 | Zailani M Z, Ismail A F, Kadir S, et al. Hemocompatibility evaluation of poly(1,8-octanediol citrate) blend polyethersulfone membranes[J]. Journal of Biomedical Materials Research Part A, 2017, 105(5): 1510-1520. |
63 | Irfan M, Idris A. Overview of PES biocompatible/hemodialysis membranes: PES–blood interactions and modification techniques[J]. Materials Science and Engineering: C, 2015, 56: 574-592. |
64 | Wei X, Li G, Nie J, et al. Preparation and improvement anti-fouling property and biocompatibility of polyethersulfone membrane by blending comb-like amphiphilic copolymer[J]. Journal of Porous Materials, 2014, 21(5): 589-599. |
65 | Kaleekkal N J, Thanigaivelan A, Durga M, et al. Graphene oxide nanocomposite incorporated poly(ether imide) mixed matrix membranes for in vitro evaluation of its efficacy in blood purification applications[J]. Industrial & Engineering Chemistry Research, 2015, 54(32): 7899-7913. |
66 | Prihandana G S, Ito H, Nishinaka Y, et al. Polyethersulfonemembrane coated with nanoporousparylene for ultrafiltration[J]. Journal of Microelectromechanical Systems, 2012, 21(6): 1288-1290. |
67 | You I, Kang S M, Byun Y, et al. Enhancement of blood compatibility of poly(urethane) substrates by mussel-inspired adhesive heparin coating[J]. Bioconjugate Chemistry, 2011, 22(7): 1264-1269. |
68 | Ma L, Qin H, Cheng C, et al. Mussel-inspired self-coating at macro-interface with improved biocompatibility and bioactivity via dopamine grafted heparin-like polymers and heparin[J]. Journal of Materials Chemistry B, 2014, 2(4): 363-375. |
69 | Zhao Y F, Zhang P B, Sun J, et al. Versatile antifouling polyethersulfone filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive[J]. Journal of Colloid and Interface Science, 2015, 448: 380-388. |
70 | Wang C, Wang Q, Li S S, et al. One-pot synthesis of highly hemocompatible polyurethane/polyethersulfone composite membranes[J]. Polymer Bulletin, 2017, 74(9): 3797-3818. |
71 | Li S S, Xie Y, Xiang T, et al. Heparin-mimicking polyethersulfone membranes-hemocompatibility, cytocompatibility, antifouling and antibacterial properties[J]. Journal of Membrane Science, 2016, 498: 135-146. |
72 | Wang J J, Wu M B, Xiang T, et al. Antifouling and blood-compatible poly(ether sulfone) membranes modified by zwitterionic copolymers viain situ crosslinked copolymerization[J]. Journal of Applied Polymer Science, 2015, 132(10): 41585. |
73 | Ran F, Song H M, Ma L, et al. Fabrication and cytocompatibility evaluation for blood-compatible polyethersulfone membrane modified by a synthesized poly (vinyl pyrrolidone)-block-poly (acrylate-graft-poly(methyl methacrylate))-block-poly-(vinyl pyrrolidone)[J]. Polymers for Advanced Technologies, 2016, 27(5): 591-596. |
74 | Yin Z, Cheng C, Qin H, et al. Hemocompatible polyethersulfone/polyurethane composite membrane for high-performance antifouling and antithrombotic dialyzer[J]. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2015, 103(1): 97-105. |
75 | Wang X H, Yan Y N, Lin F, et al. Preparation and characterization of a collagen/chitosan/heparin matrix for an implantable bioartificial liver[J]. Journal of Biomaterials Science-Polymer Edition, 2005, 16(9): 1063-1080. |
76 | Wang W. Hemocompatibility and oxygenation performance of polysulfone membranes grafted with polyethylene glycol and heparin by plasma-induced surface modification[J]. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2017, 105(7): 1737-1746. |
77 | Yang Y F, Wan L S, Xu Z K. Surface engineering of microporous polypropylene membrane for antifouling: a mini-review[J]. Journal of Adhesion Science and Technology, 2011, 25(1/2/3): 245-260. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[3] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[4] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[5] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[6] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[7] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[8] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[9] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[10] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[11] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[12] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[13] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[14] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[15] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 540
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 782
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||