化工学报 ›› 2019, Vol. 70 ›› Issue (5): 1795-1803.DOI: 10.11949/j.issn.0438-1157.20181525
朱勇晨(),李小华(),张小雷,胡超,董文斌,程静峰,邵珊珊
收稿日期:
2018-12-28
修回日期:
2019-02-20
出版日期:
2019-05-05
发布日期:
2019-05-05
通讯作者:
李小华
作者简介:
<named-content content-type="corresp-name">朱勇晨</named-content>(1994—),男,硕士研究生,<email>1092280926@qq.com</email>|李小华(1971—),男,博士,教授,<email>lixiaohua@ujs.edu.cn</email>
基金资助:
Yongchen ZHU(),Xiaohua LI(),Xiaolei ZHANG,Chao HU,Wenbin DONG,Jingfeng CHENG,Shanshan SHAO
Received:
2018-12-28
Revised:
2019-02-20
Online:
2019-05-05
Published:
2019-05-05
Contact:
Xiaohua LI
摘要:
以氧气为气源,利用低温等离子体(NTP)喷射系统,在不同温度下对结焦失活的La改性多级孔HZSM-5分子筛进行再生,采用TG、XRD、Py-IR及N2吸附-脱附等测试技术对再生前后催化剂的理化性质进行表征,并利用再生催化剂进行在线催化提质生物油试验。结果表明,再生温度为250℃时,失活La改性多级孔HZSM-5分子筛再生效果最好,去除了97.4%的积炭,其表面结晶度、酸性、比表面积和孔容恢复程度最高。再生温度上升至300℃时,O3分解较多,此时O3分解已经成为积炭氧化分解的限制因素,排气中CO2和CO浓度峰值减小,失活催化剂再生效果有所下降。再生温度为250℃时,再生催化剂催化性能恢复最好,制得的生物油高位热值最大(36.48 MJ/kg),烃类含量最高(40.51%),其理化性质与新鲜催化剂制得的生物油理化性质最接近。
中图分类号:
朱勇晨, 李小华, 张小雷, 胡超, 董文斌, 程静峰, 邵珊珊. NTP再生La改性多级孔HZSM-5及催化提质生物油的试验研究[J]. 化工学报, 2019, 70(5): 1795-1803.
Yongchen ZHU, Xiaohua LI, Xiaolei ZHANG, Chao HU, Wenbin DONG, Jingfeng CHENG, Shanshan SHAO. Study on regeneration of La modified multistage pore HZSM-5 by NTP and catalytic upgrading of bio-oil[J]. CIESC Journal, 2019, 70(5): 1795-1803.
积炭类型 | 失活催化剂 | H-100 | H-150 | H-200 | H-250 | H-300 |
---|---|---|---|---|---|---|
Ⅰ类 | 6.88 | 2.79 | 2.15 | 1.38 | 0.19 | 1.42 |
Ⅱ类 | 1.67 | 0.62 | 0.46 | 0.34 | 0.03 | 0.40 |
表1 再生前后La改性多级孔HZSM-5分子筛的积炭分布
Table 1 Coke of La modified multistage pore HZSM-5 zeolite before and after regeneration/%
积炭类型 | 失活催化剂 | H-100 | H-150 | H-200 | H-250 | H-300 |
---|---|---|---|---|---|---|
Ⅰ类 | 6.88 | 2.79 | 2.15 | 1.38 | 0.19 | 1.42 |
Ⅱ类 | 1.67 | 0.62 | 0.46 | 0.34 | 0.03 | 0.40 |
图4 再生前后La改性多级孔HZSM-5分子筛的Py-IR谱图和酸量分布图
Fig.4 Py-IR spectra and acid amount distribution of La modified multistage pore HZSM-5 zeolite before and after regeneration
催化剂 | 比表面积/(m2/g) | 孔容/(cm3/g) |
---|---|---|
新鲜 | 281.2 | 0.258 |
失活 | 84.6 | 0.077 |
H-100 | 182.8 | 0.168 |
H-150 | 210.9 | 0.193 |
H-200 | 239.2 | 0.219 |
H-250 | 272.8 | 0.251 |
H-300 | 241.8 | 0.221 |
表2 再生前后La改性多级孔HZSM-5分子筛的比表面积和孔容
Table 2 Specific surface area and pore volume of La modified multistage pore HZSM-5 zeolite before and after regeneration
催化剂 | 比表面积/(m2/g) | 孔容/(cm3/g) |
---|---|---|
新鲜 | 281.2 | 0.258 |
失活 | 84.6 | 0.077 |
H-100 | 182.8 | 0.168 |
H-150 | 210.9 | 0.193 |
H-200 | 239.2 | 0.219 |
H-250 | 272.8 | 0.251 |
H-300 | 241.8 | 0.221 |
生物油 | 高位热值/(MJ/kg) | pH | 含氧率/% | 黏度/(mm2/s) |
---|---|---|---|---|
O-100 | 30.65 | 4.96 | 18.08 | 6.55 |
O-150 | 32.88 | 5.43 | 16.51 | 6.02 |
O-200 | 35.13 | 5.82 | 14.99 | 5.81 |
O-250 | 36.48 | 5.95 | 13.83 | 5.69 |
O-300 | 35.21 | 5.80 | 14.97 | 5.79 |
O-新鲜 | 37.72 | 6.01 | 13.45 | 5.64 |
表3 再生后La改性多级孔HZSM-5分子筛提质的生物油理化特性
Table 3 Physical and chemical properties of bio-oil upgraded by La modified multistage pore HZSM-5 zeolite after regeneration
生物油 | 高位热值/(MJ/kg) | pH | 含氧率/% | 黏度/(mm2/s) |
---|---|---|---|---|
O-100 | 30.65 | 4.96 | 18.08 | 6.55 |
O-150 | 32.88 | 5.43 | 16.51 | 6.02 |
O-200 | 35.13 | 5.82 | 14.99 | 5.81 |
O-250 | 36.48 | 5.95 | 13.83 | 5.69 |
O-300 | 35.21 | 5.80 | 14.97 | 5.79 |
O-新鲜 | 37.72 | 6.01 | 13.45 | 5.64 |
1 | Dan C , Wang L , Abolghasem S , et al . Characterization of the physical and chemical properties of the distillate fractions of crude bio-oil produced by the glycerol-assisted liquefaction of swine manure[J]. Fuel, 2014, 130: 251-256. |
2 | Xu L , Cheng J , Liu P , et al . Production of bio-fuel oil from pyrolysis of plant acidified oil[J]. Renewable Energy, 2019, 130: 910-919. |
3 | Yan B , Zhang S , Chen W , et al . Pyrolysis of tobacco wastes for bio-oil with aroma compounds[J]. Journal of Analytical and Applied Pyrolysis, 2018, 136: 248-254. |
4 | Hu C S , Zhagn H Y , Xiao R . Catalytic fast pyrolysis of biomass over core-shell HZSM-5@silicalite-1 in a bench-scale two-stage fluidized-bed/fixed-bed reactor[J]. Journal of Analytical and Applied Pyrolysis, 2018, 136: 27-34. |
5 | Li X H , Zhang X L , Shao S S , et al . Catalytic upgrading of pyrolysis vapor from rape straw in a vacuum pyrolysis system over La/HZSM-5 with hierarchical structure[J]. Bioresource Technology, 2018, 259: 191-197. |
6 | 刘亚华, 李扬, 王科, 等 .二甲醚羰基化催化剂的烧炭再生[J].化工学报, 2017, 68(10): 3816-3822. |
Liu Y H , Li Y , Wang K , et al . Charcoal regeneration of dimethyl ether carbonylation catalyst[J]. CIESC Journal, 2017, 68(10): 3816-3822. | |
7 | 刘守新, 张世润, 孙承林 .木质活性炭的光催化再生[J]. 林产化学与工业, 2003, (2): 12-16. |
Liu S X , Zhang S R , Sun C L . Photocatalytic regeneration of woody activated carbon[J]. Chemistry and Industry of Forest Products, 2003, (2): 12-16. | |
8 | 于丽丽, 易红宏, 宁平, 等 .改性活性炭水解COS催化剂的再生方法[J].中南大学学报(自然科学版), 2011, 42(3): 841-847. |
Yu L L , Yi H H , Ning P , et al . Regeneration method of modified activated carbon hydrolyzed COS catalyst[J]. Journal of Central South University(Natural Science), 2011, 42(3): 841-847. | |
9 | López A , de Marco I , Caballero B M , et al . Deactivation and regeneration of ZSM-5 zeolite in catalytic pyrolysis of plastic wastes[J]. Waste Management, 2011, 31(8): 1852-1858. |
10 | Serrano D P , Aguado J , Rodríguez J M , et al . Catalytic cracking of polyethylene over nanocrystalline HZSM-5: catalyst deactivation and regeneration study[J]. Journal of Analytical and Applied Pyrolysis, 2007, 79 (1): 456-464. |
11 | Li X Y , Li P , PAN X L , et al . Deactivation mechanism and regeneration of carbon nanocomposite catalyst for acetylene hydrochlorination[J]. Applied Catalysis B: Environmental, 2017, 210: 116-120. |
12 | Wang W Z , Wang H L , Zhu T L , et al . Removal of gas phase low-concentration toluene over Mn, Ag and Ce modified HZSM-5 catalysts by periodical operation of adsorption and non-thermal plasma regeneration[J]. Journal of Hazardous Materials, 2015, 292: 70-78. |
13 | Okubo M , Arita N , Kuroki T , et al . Carbon particulate matter incineration in diesel engine emissions using indirect nonthermal plasma processing[J]. Thin Solid Films, 2007, 515(9): 4289-4295. |
14 | Li X H , Li W J , Cai Y X , et al . Deposit removal in EGR cooler and effectiveness improvement by non-thermal plasma reactor with different gas sources[J]. Applied Thermal Engineering, 2017, 111: 694-702. |
15 | 施蕴曦, 蔡忆昔, 王静, 等 .空气流量对低温等离子体再生DPF的影响[J].江苏大学学报(自然科学版), 2017, 38(5): 509-515. |
Shi Y X , Cai Y X , Wang J , et al . Effect of air flow on low temperature plasma regeneration DPF[J]. Journal of Jiangsu University(Natural Science Edition), 2017, 38(5): 509-515. | |
16 | 郑益, 蔡忆昔, 陈亚运, 等 .再生温度对NTP再生EGR冷却器的影响[J].内燃机工程, 2016, 37(6): 210-215. |
Zheng Y , Cai Y X , Chen Y Y , et al . Effect of regeneration temperature on NTP regenerative EGR cooler[J]. Internal Combustion Engine Engineering, 2016, 37(6): 210-215. | |
17 | 邵珊珊 . 生物质催化热解中催化剂积炭与再生特性研究[D].南京: 东南大学, 2016. |
Shao S S . Study on catalyst carbon deposition and regeneration characteristics in biomass catalytic pyrolysis[D]. Nanjing: Southeast University, 2016. | |
18 | 张瑾, 李小华, 董良秀, 等 .碱处理HZSM-5分子筛在线催化提质生物油[J].燃料化学学报, 2017, 45(7): 828-836. |
Zhang J , Li X H , Dong L X , et al . On-line catalytic catalyzed upgrading of bio-oil by alkali-treated HZSM-5 molecular sieve[J]. Journal of Fuel Chemistry, 2017, 45(7): 828-836. | |
19 | Chu L B , Wang J L . Regeneration of sulfamethoxazole-saturated activated carbon using gamma irradiation[J]. Radiation Physics and Chemistry, 2017, 130: 391-396. |
20 | Calafta A , Sanchez N . Production of carbon nanotubes through combination of catalyst reduction and methane decomposition over Fe–Ni/ZrO2 catalysts prepared by the citrate method[J]. Applied Catalysis A: General, 2016, 528: 14-23. |
21 | Jia L Y , Farouha A , Pinard L , et al . New routes for complete regeneration of coked zeolite[J]. Applied Catalysis B: Environmental, 2017, 219: 82-91. |
22 | 唐松山, 泮泽优, 张长森, 等 .碱改性HZSM-5催化热解木质素催化剂失活分析[J].化工学报, 2017, 68(12): 4739-4749. |
Tang S S , Pan Z Y , Zhang C S , et al . Deactivation analysis of catalyzed pyrolysis lignin catalyst by alkali-modified HZSM-5[J].CIESC Journal, 2017, 68(12): 4739-4749. | |
23 | 陆强, 李文志, 张栋, 等 .锯末快速热解气的在线催化裂解[J].化工学报, 2009, 60(2): 351-357. |
Lu Q , Li W Z , Zhang D , et al . On-line catalytic cracking of rapid pyrolysis gas from sawdust[J].CIESC Journal, 2009, 60(2): 351-357. | |
24 | 施梅勤, 郑慧新, 魏爱平, 等 .Zn助剂对WC/HZSM-5催化正己烷芳构化性能影响[J].化工学报, 2015, 66(2): 553-560. |
Shi M Q , Zheng H X , Wei A P , et al . Effect of Zn promoter on the aromatization performance of n-hexane catalyzed by WC/HZSM-5[J]. CIESC Journal, 2015, 66(2): 553-560. | |
25 | 张向京, 马仁娟, 孙瑞钰, 等 .HZSM-5催化剂在MTG反应中的积炭失活[J].化工学报, 2015, 66(9): 3483-3489. |
Zhang X J , Ma R J , Sun R Y , et al . Carbon deposition inactivation of HZSM-5 catalyst in MTG reaction[J]. CIESC Journal, 2015, 66(9): 3483-3489. | |
26 | Fan Y S , Cai Y X , Li X H , et al . Regeneration of the HZSM-5 zeolite deactivated in the upgrading of bio-oil via non-thermal plasma injection (NTPI) technology[J]. Journal of Analytical and Applied Pyrolysis, 2015, 111: 209-215. |
27 | Yang Y J , Jia J B , Liu Y , et al . The effect of tungsten doping on the catalytic activity of α-MnO2 nanomaterial for ozone decomposition under humid condition[J]. Applied Catalysis A: General, 2018, 562: 132-141. |
28 | Jiang N , Guo L J , Qiu C , et al . Reactive species distribution characteristics and toluene destruction in the three-electrode DBD reactor energized by different pulsed modes[J]. Chemical Engineering Journal, 2018, 350: 12-19. |
29 | Guan B , Lin H , Zhan R , et al . Catalytic combustion of soot over Cu, Mn substitution CeZrO2- δ nanocomposites catalysts prepared by self-propagating high-temperature synthesis method[J]. Chemical Engineering Science, 2018, 189: 320-339. |
30 | Lydia K E , Liu J , Sotira Y , et al . Contribution of acidic components to the total acid number (TAN) of bio-oil[J]. Fuel, 2017, 200: 171-181. |
31 | Leng L , Li H , Yuan X , et al . Bio-oil upgrading by emulsification/microemulsification: a review[J]. Energy, 2018, 161: 214-232. |
32 | 赵岩, 刘银 .HZSM-5分子筛催化热裂解生物质制备芳烃化合物[J].化工新型材料, 2017, 45(2): 145-147. |
Zhao Y , Liu Y . Preparation of aromatic compounds by catalytic pyrolysis of biomass by HZSM-5 molecular sieve[J].New Chemical Materials, 2017, 45(2): 145-147. | |
33 | Melchor J J , Fortes I C P . Bio-oil production by pyrolysis of metal soaps derived from macauba pulp oil[J]. Journal of Analytical and Applied Pyrolysis, 2018, 135: 101-110. |
34 | Rahman M M , Liu R H , Cai J M . Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil — a review[J]. Fuel Processing Technology, 2018, 180: 32-46. |
35 | 刘莎, 蔡忆昔, 樊永胜, 等 .MCM-41分子筛在线提质生物油工艺优化及耐久性分析[J].林产化学与工业, 2016, 36(4): 55-63. |
Liu S , Cai Y X , Fan Y S , et al . Process optimization and durability analysis of MCM-41 molecular sieve on-line bio-oil improvement[J]. Chemistry and Industry of Forest Products, 2016, 36(4): 55-63. |
[1] | 包嘉靖, 别洪飞, 王子威, 肖睿, 刘冬, 吴石亮. 正庚烷对冲扩散火焰中添加长链醚类对碳烟前体生成特性的影响[J]. 化工学报, 2023, 74(4): 1680-1692. |
[2] | 王润涛, 罗泽军, 王储, 朱锡锋. 生物油蒸馏残渣与废弃塑料催化共热解协同作用的研究[J]. 化工学报, 2022, 73(11): 5088-5097. |
[3] | 颜蓓蓓, 王建, 刘彬, 陈冠益, 程占军. 生物油金属水热原位加氢提质技术研究进展[J]. 化工学报, 2021, 72(4): 1783-1795. |
[4] | 杨耀钧, 刁瑞, 王储, 朱锡锋. 不同金属氧化物对重质生物油再裂解的比较性研究[J]. 化工学报, 2021, 72(11): 5820-5830. |
[5] | 孙焱, 沈晓文, 许细薇, 蒋恩臣, 刘雪聪. 化学链耦合催化重整热解生物油制备合成气[J]. 化工学报, 2021, 72(11): 5607-5619. |
[6] | 邓伟,林镇浩,熊哲,汪雪棚,徐俊,江龙,苏胜,汪一,胡松,向军. 生物油电催化加氢提质技术研究进展[J]. 化工学报, 2021, 72(10): 4987-5001. |
[7] | 苏银海,张书平,刘凌沁,熊源泉. 活性炭催化热解纤维素协同制备酚类和合成气[J]. 化工学报, 2021, 72(10): 5206-5217. |
[8] | 马珊宏, 叶枫, 王燕鸿, 郎雪梅, 樊栓狮, 李刚. ZSM-5沸石膜用于生物油的脱水分离及其再生过程研究[J]. 化工学报, 2020, 71(7): 3345-3353. |
[9] | 罗泽军, 胡永华, 王雨松, 朱谢飞, 朱锡锋. 重质生物油理化性质及其热解特性研究[J]. 化工学报, 2019, 70(8): 3196-3201. |
[10] | 孙来芝, 陈雷, 赵保峰, 杨双霞, 谢新苹, 孟凡军, 司洪宇. Mo/ZSM-5催化作用下生物质快速热解制生物油实验研究[J]. 化工学报, 2019, 70(8): 3160-3166. |
[11] | 张继宗, 常厚春, 常建民, 龙金星, 李雪辉. 生物油对生物油基淀粉胶黏剂性能的影响[J]. 化工学报, 2018, 69(S1): 123-128. |
[12] | 张继宗, 常厚春, 常建民, 龙金星, 李雪辉. 生物油淀粉胶黏剂固化特性研究[J]. 化工学报, 2018, 69(12): 5309-5315. |
[13] | 陈泳兴, 魏琦峰, 任秀莲. 丙胺溶液水热液化海藻残渣及产物生物油分析[J]. 化工学报, 2017, 68(9): 3592-3599. |
[14] | 张冀翔, 蒋宝辉, 王东, 魏耀东. 微藻水热液化生物油化学性质与表征方法综述[J]. 化工学报, 2016, 67(5): 1644-1653. |
[15] | 张冀翔, 王东, 蒋宝辉, 魏耀东. 厨余垃圾水热液化制取生物燃料[J]. 化工学报, 2016, 67(4): 1475-1482. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||