化工学报 ›› 2019, Vol. 70 ›› Issue (11): 4306-4314.DOI: 10.11949/0438-1157.20190425
收稿日期:
2019-04-24
修回日期:
2019-07-04
出版日期:
2019-11-05
发布日期:
2019-11-05
通讯作者:
张冰剑
作者简介:
马香成(1995—),女,硕士研究生,基金资助:
Xiangcheng MA(),Wei QIN,Qinglin CHEN,Bingjian ZHANG()
Received:
2019-04-24
Revised:
2019-07-04
Online:
2019-11-05
Published:
2019-11-05
Contact:
Bingjian ZHANG
摘要:
根据芳烃分子中碳原子所处化学环境的差异,修正分子描述符Randi?连接性指数中碳原子支化度参数δi ,提出新的分子描述符Modran;通过对比分析表明描述符Modran对芳烃分子的化学结构具有更好的选择性。分析芳烃沸点的影响因素,采用最优子集选择法,发现Modran一阶和二阶支化度指数、分子极化率和芳环碳原子占比四个分子描述符参数的组合对芳烃沸点具有良好的预测能力,进而建立包含Modran等四分子描述符的线性组合模型和神经网络模型。与Marrero-Pardillo基团贡献法比较,四分子描述符的神经网络模型将芳烃沸点预测的平均绝对误差由12.26 K降低到4.56 K。
中图分类号:
马香成, 秦蔚, 陈清林, 张冰剑. 芳烃分子描述符的修正和沸点预测建模[J]. 化工学报, 2019, 70(11): 4306-4314.
Xiangcheng MA, Wei QIN, Qinglin CHEN, Bingjian ZHANG. Modification of molecular descriptor and modeling for boiling point prediction of aromatic hydrocarbons[J]. CIESC Journal, 2019, 70(11): 4306-4314.
No. | Name | lnW | | | TB/K① | Uncertainty/K① |
---|---|---|---|---|---|---|
1 | 1-methyl-2-n-propylbenzene | 4.796 | 2.201 | 1.242 | 457.82 | 0.7830 |
2 | 4-ethyl-m-xylene | 4.754 | 2.176 | 1.205 | 461.51 | 0.5370 |
3 | p-xylene | 4.127 | 1.946 | 1.084 | 411.46 | 0.0593 |
4 | m-xylene | 4.111 | 1.946 | 1.086 | 412.22 | 0.0261 |
5 | 1-isopropyl-4-methylbenzene | 4.787 | 2.167 | 1.197 | 450.27 | 0.0771 |
6 | 2-ethyl-1,4-dimethylbenzene | 4.745 | 2.176 | 1.205 | 459.72 | 0.7230 |
7 | 1-ethyl-3,5-dimethylbenzene | 4.754 | 2.173 | 1.209 | 457.07 | 1.1400 |
9 | 1-isopropyl-2-methylbenzene | 4.736 | 2.171 | 1.201 | 451.45 | 0.0946 |
10 | 1-isopropyl-3-methylbenzene | 4.762 | 2.167 | 1.200 | 448.20 | 1.3500 |
12 | 1-methyl-4-propylbenzene | 4.844 | 2.197 | 1.239 | 456.50 | 0.7670 |
13 | 1,3-diethylbenzene | 4.796 | 2.205 | 1.240 | 454.27 | 0.1890 |
14 | sec-butylbenzene | 4.796 | 2.201 | 1.235 | 446.44 | 0.0313 |
15 | 1,2,3,5-tetramethylbenzene | 4.700 | 2.147 | 1.168 | 471.07 | 0.8890 |
16 | 1,2,4,5-tetramethylbenzene | 4.710 | 2.147 | 1.166 | 469.88 | 1.6300 |
17 | 1-tert-butyl-3-methylbenzene | 4.997 | 2.236 | 1.240 | 462.38 | 2.5900 |
18 | 1-tert-butyl-4-ethylbenzene | 5.303 | 2.353 | 1.287 | 485.26 | 2.7000 |
表1 部分芳烃化合物的沸点及其Wiener、Randi?、Modran分子描述符值
Table 1 Boiling point of some aromatic compounds and their Wiener, Randi? and Modran molecular descriptor values
No. | Name | lnW | | | TB/K① | Uncertainty/K① |
---|---|---|---|---|---|---|
1 | 1-methyl-2-n-propylbenzene | 4.796 | 2.201 | 1.242 | 457.82 | 0.7830 |
2 | 4-ethyl-m-xylene | 4.754 | 2.176 | 1.205 | 461.51 | 0.5370 |
3 | p-xylene | 4.127 | 1.946 | 1.084 | 411.46 | 0.0593 |
4 | m-xylene | 4.111 | 1.946 | 1.086 | 412.22 | 0.0261 |
5 | 1-isopropyl-4-methylbenzene | 4.787 | 2.167 | 1.197 | 450.27 | 0.0771 |
6 | 2-ethyl-1,4-dimethylbenzene | 4.745 | 2.176 | 1.205 | 459.72 | 0.7230 |
7 | 1-ethyl-3,5-dimethylbenzene | 4.754 | 2.173 | 1.209 | 457.07 | 1.1400 |
9 | 1-isopropyl-2-methylbenzene | 4.736 | 2.171 | 1.201 | 451.45 | 0.0946 |
10 | 1-isopropyl-3-methylbenzene | 4.762 | 2.167 | 1.200 | 448.20 | 1.3500 |
12 | 1-methyl-4-propylbenzene | 4.844 | 2.197 | 1.239 | 456.50 | 0.7670 |
13 | 1,3-diethylbenzene | 4.796 | 2.205 | 1.240 | 454.27 | 0.1890 |
14 | sec-butylbenzene | 4.796 | 2.201 | 1.235 | 446.44 | 0.0313 |
15 | 1,2,3,5-tetramethylbenzene | 4.700 | 2.147 | 1.168 | 471.07 | 0.8890 |
16 | 1,2,4,5-tetramethylbenzene | 4.710 | 2.147 | 1.166 | 469.88 | 1.6300 |
17 | 1-tert-butyl-3-methylbenzene | 4.997 | 2.236 | 1.240 | 462.38 | 2.5900 |
18 | 1-tert-butyl-4-ethylbenzene | 5.303 | 2.353 | 1.287 | 485.26 | 2.7000 |
No. | XM 0 | XM 1 | HOMA | lnSp | ACD | CIC2 | R 2 | F | RSE |
---|---|---|---|---|---|---|---|---|---|
1 | * | 0.9728 | 2280 | 11.70 | |||||
2 | * | * | 0.9896 | 3010 | 7.29 | ||||
3 | * | * | * | 0.9905 | 2160 | 7.03 | |||
4 | * | * | * | * | 0.9910 | 1680 | 6.90 | ||
5 | * | * | * | * | * | 0.9913 | 1360 | 6.85 | |
6 | * | * | * | * | * | * | 0.9913 | 1130 | 6.89 |
表2 最优子集选择法分子描述符筛选
Table 2 Selection of molecular descriptors by optimal subset method
No. | XM 0 | XM 1 | HOMA | lnSp | ACD | CIC2 | R 2 | F | RSE |
---|---|---|---|---|---|---|---|---|---|
1 | * | 0.9728 | 2280 | 11.70 | |||||
2 | * | * | 0.9896 | 3010 | 7.29 | ||||
3 | * | * | * | 0.9905 | 2160 | 7.03 | |||
4 | * | * | * | * | 0.9910 | 1680 | 6.90 | ||
5 | * | * | * | * | * | 0.9913 | 1360 | 6.85 | |
6 | * | * | * | * | * | * | 0.9913 | 1130 | 6.89 |
w | i 1 | i 2 | i 3 | i 4 | No. | θ(j) | γ(k) |
---|---|---|---|---|---|---|---|
j 1 | 0.961 | 3.964 | -0.678 | 2.084 | 1 | 4.496 | 5.985 |
j 2 | 1.345 | 0.629 | 3.33 | -2.316 | 2 | -0.761 | |
j 3 | -0.783 | 1.732 | 2.183 | 1.618 | 3 | 2.332 |
表3 神经网络训练模型权重及阈值
Table 3 Weight and threshold of neural network training model
w | i 1 | i 2 | i 3 | i 4 | No. | θ(j) | γ(k) |
---|---|---|---|---|---|---|---|
j 1 | 0.961 | 3.964 | -0.678 | 2.084 | 1 | 4.496 | 5.985 |
j 2 | 1.345 | 0.629 | 3.33 | -2.316 | 2 | -0.761 | |
j 3 | -0.783 | 1.732 | 2.183 | 1.618 | 3 | 2.332 |
模型 | 数据 | R 2 | MSE | RSE | AAE | APE/% | 分子类型 |
---|---|---|---|---|---|---|---|
M-P基团贡献法 | 66 | 0.9602 | 334.71 | 16.03 | 12.26 | 2.434 | 单环芳烃 |
QSPR 训练集 | 66 | 0.9910 | 43.96 | 6.90 | 5.11 | 1.038 | 单环芳烃 |
QSPR 测试集 | 66 | 0.9897 | 50.69 | 7.20 | 5.56 | 1.134 | 单环芳烃 |
QSPR-ML 训练集 | 66 | 0.9936 | 33.37 | 5.77 | 4.56 | 0.933 | 单环芳烃 |
QSPR-ML 测试集 | 66 | 0.9942 | 38.03 | 5.75 | 5.06 | 1.057 | 单环芳烃 |
HMC-WL-ANN | 20 | — | — | — | 26.85 | 3.814 | 多环芳烃 |
QSPR(Dai) | 50 | 0.9910 | — | 6.46 | — | — | 不饱和烃 |
表4 基团贡献法、QSPR与QSPR-ML模型对于芳烃沸点预测效果对比
Table 4 Comparison of group contribution method, QSPR and QSPR-ML models for predicting boiling point of aromatics
模型 | 数据 | R 2 | MSE | RSE | AAE | APE/% | 分子类型 |
---|---|---|---|---|---|---|---|
M-P基团贡献法 | 66 | 0.9602 | 334.71 | 16.03 | 12.26 | 2.434 | 单环芳烃 |
QSPR 训练集 | 66 | 0.9910 | 43.96 | 6.90 | 5.11 | 1.038 | 单环芳烃 |
QSPR 测试集 | 66 | 0.9897 | 50.69 | 7.20 | 5.56 | 1.134 | 单环芳烃 |
QSPR-ML 训练集 | 66 | 0.9936 | 33.37 | 5.77 | 4.56 | 0.933 | 单环芳烃 |
QSPR-ML 测试集 | 66 | 0.9942 | 38.03 | 5.75 | 5.06 | 1.057 | 单环芳烃 |
HMC-WL-ANN | 20 | — | — | — | 26.85 | 3.814 | 多环芳烃 |
QSPR(Dai) | 50 | 0.9910 | — | 6.46 | — | — | 不饱和烃 |
1 | Constantinou L , Gani R . New group contribution method for estimating properties of pure compounds[J]. AIChE Journal, 1994, 40(10): 1697-1710. |
2 | Messerly R A , Knotts IV T A , Giles N F , et al . Developing an internally consistent set of theoretically based prediction models for the critical constants and normal boiling point of large n-alkanes[J]. Fluid Phase Equilibria, 2017, 449: 104-116. |
3 | Shacham M , Brauner N . Analysis and refinement of the training set in predicting a variety of constant pure compound properties by the targeted QSPR method[J]. Chemical Engineering Science, 2011, 66(12): 2606-2615. |
4 | Varamesh A , Hemmati-Sarapardeh A , Dabir B , et al . Development of robust generalized models for estimating the normal boiling points of pure chemical compounds[J]. Journal of Molecular Liquids, 2017, 242: 59-69. |
5 | Wen X , Qiang Y . Group vector space method for estimating melting and boiling points of organic compounds[J]. Industrial & Engineering Chemistry Research, 2002, 41(22): 5534-5537. |
6 | Joback K G , Reid R C . Estimation of pure-component properties from group-contributions[J]. Chemical Engineering Communications, 1987, 57(1/2/3/4/5/6): 233-243. |
7 | Marrero‐Morejón J , Pardillo-Fontdevila E . Estimation of pure compound properties using group‐interaction contributions[J]. AIChE Journal, 1999, 45(3): 615-621. |
8 | Ghasemitabar H , Movagharnejad K . Estimation of the normal boiling point of organic compounds via a new group contribution method[J]. Fluid Phase Equilibria, 2016, 411: 13-23. |
9 | Dearden J C . Quantitative structure‐property relationships for prediction of boiling point, vapor pressure, and melting point[J]. Environmental Toxicology and Chemistry, 2003, 22(8): 1696-1709. |
10 | Wiener H . Structural determination of paraffin boiling points[J]. Journal of the American Chemical Society, 1947, 69(1): 17-20. |
11 | Todeschini R , Consonni V . Handbook of Molecular Descriptors[M]. John Wiley & Sons, 2008. |
12 | Zhou L , Wang B , Jiang J , et al . Quantitative structure-property relationship (QSPR) study for predicting gas-liquid critical temperatures of organic compounds[J]. Thermochimica Acta, 2017, 655: 112-116. |
13 | Fissa M R , Lahiouel Y , Khaouane L , et al . QSPR estimation models of normal boiling point and relative liquid density of pure hydrocarbons using MLR and MLP-ANN methods[J]. Journal of Molecular Graphics and Modelling, 2019, 87: 109-120. |
14 | Ha Z , Ring Z , Liu S . Quantitative structure- property relationship (QSPR) models for boiling points, specific gravities, and refraction indices of hydrocarbons[J]. Energy & Fuels, 2005, 19(1): 152-163. |
15 | Li Z , Zuo L , Wu W , et al . The new method for correlation and prediction of thermophysical properties of fluids. critical temperature[J]. Journal of Chemical & Engineering Data, 2017, 62(11): 3723-3731. |
16 | 魏文英, 孔海宁, 许文, 等 . 蒸发焓及沸点估算的基团拓扑空间方法[J]. 化工学报, 2006, 57(4): 710-714. |
Wei W Y , Kong H N , Xu W , et al . Topologic group space method for estimating normal boiling point enthalpy of vaporization and boiling point [J]. Journal of Chemical Industry and Engineering(China), 2006, 57(4): 710-714. | |
17 | Brauner N , St Cholakov G , Kahrs O , et al . Linear QSPRs for predicting pure compound properties in homologous series[J]. AIChE Journal, 2008, 54(4): 978-990. |
18 | Brauner N , Paster I , Shacham M . Linear QSPRs for the prediction of acentric factor and critical volume of long-chain substances[C]// 2010 AIChE Annual Meeting. Salt Lake City, UT, 2010. |
19 | Paster I , Shacham M , Brauner N . Adjustable QSPRs for prediction of properties of long‐chain substances[J]. AIChE Journal, 2011, 57(2): 423-433. |
20 | Brauner N , Shacham M . Prediction of normal melting point of pure substances by a reference series method[J]. AIChE Journal, 2013, 59(10): 3730-3740. |
21 | Shacham M , Cholakov G S , Stateva R P , et al . Quantitative structure-property relationships for prediction of phase equilibrium related properties[J]. Industrial & Engineering Chemistry Research, 2009, 49(2): 900-912. |
22 | Manso F C G , Júnior H S , Bruns R E , et al . Development of a new topological index for the prediction of normal boiling point temperatures of hydrocarbons: the Fi index[J]. Journal of Molecular Liquids, 2012, 165: 125-132. |
23 | Dai Y , Zhu Z , Cao Z , et al . Prediction of boiling points of organic compounds by QSPR tools[J]. Journal of Molecular Graphics and Modelling, 2013, 44: 113-119. |
24 | 沐来龙, 冯长君 . 环价连接性指数与饱和烃沸点的QSPR研究[J]. 化工学报, 2004, 55(10): 1702-1705. |
Mu L L , Feng C J . Connectivity index of environment valence and QSPR research for boiling points of saturated hydrocarbon [J]. Journal of Chemical Industry and Engineering(China), 2004, 55(10): 1702-1705. | |
25 | Zeng Y , Liu J , Sun K , et al . Machine learning based system performance prediction model for reactor control[J]. Annals of Nuclear Energy, 2018, 113: 270-278. |
26 | Zhang Z , Li H , Chang H , et al . Machine learning predictive framework for CO2 thermodynamic properties in solution[J]. Journal of CO2 Utilization, 2018, 26: 152-159. |
27 | Palagi L , Pesyridis A , Sciubba E , et al . Machine learning for the prediction of the dynamic behavior of a small scale ORC system[J]. Energy, 2019, 166: 72-82. |
28 | Cipullo S , Snapir B , Prpich G , et al . Prediction of bioavailability and toxicity of complex chemical mixtures through machine learning models[J]. Chemosphere, 2019, 215: 388-395. |
29 | Saldana D A , Starck L , Mougin P , et al . Prediction of flash points for fuel mixtures using machine learning and a novel equation[J]. Energy & Fuels, 2013, 27(7): 3811-3820. |
30 | Yang S , Lu W , Chen N , et al . Support vector regression based QSPR for the prediction of some physicochemical properties of alkyl benzenes[J]. Journal of Molecular Structure: THEOCHEM, 2005, 719(1/2/3): 119-127. |
31 | Groven S D , Desgranges C , Delhommelle J . Prediction of the boiling and critical points of polycyclic aromatic hydrocarbons via Wang-Landau simulations and machine learning[J]. Fluid Phase Equilibria, 2019, 484: 225-231. |
32 | 苏文, 赵力, 邓帅 . 基于基团拓扑的遗传神经网络工质临界温度预测[J]. 化工学报, 2016, 67(11): 4689-4695. |
Su W , Zhao L , Deng S . Prediction of refrigerant critical temperature with genetic neural network based on group topology [J]. CIESC Journal, 2016, 67(11): 4689-4695. | |
33 | Varamesh A , Hemmati-Sarapardeh A , Moraveji M K , et al . Generalized models for predicting the critical properties of pure chemical compounds[J]. Journal of Molecular Liquids, 2017, 240: 777-793. |
34 | Goh A T C . Back-propagation neural networks for modeling complex systems[J]. Artificial Intelligence in Engineering, 1995, 9(3): 143-151. |
[1] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[2] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[3] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[4] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[5] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[6] | 徐野, 黄文君, 米俊芃, 申川川, 金建祥. 多源信息融合的离心式压缩机喘振诊断方法[J]. 化工学报, 2023, 74(7): 2979-2987. |
[7] | 高学金, 姚玉卓, 韩华云, 齐咏生. 基于注意力动态卷积自编码器的发酵过程故障监测[J]. 化工学报, 2023, 74(6): 2503-2521. |
[8] | 黄磊, 孔令学, 白进, 李怀柱, 郭振兴, 白宗庆, 李平, 李文. 油页岩添加对准东高钠煤灰熔融行为影响的研究[J]. 化工学报, 2023, 74(5): 2123-2135. |
[9] | 贠程, 王倩琳, 陈锋, 张鑫, 窦站, 颜廷俊. 基于社团结构的化工过程风险演化路径深度挖掘[J]. 化工学报, 2023, 74(4): 1639-1650. |
[10] | 吴选军, 王超, 曹子健, 蔡卫权. 数据与物理信息混合驱动的固定床吸附穿透深度学习模型[J]. 化工学报, 2023, 74(3): 1145-1160. |
[11] | 吴心远, 刘奇磊, 曹博渊, 张磊, 都健. Group2vec:基于无监督机器学习的基团向量表示及其物性预测应用[J]. 化工学报, 2023, 74(3): 1187-1194. |
[12] | 张江淮, 赵众. 碳三加氢装置鲁棒最小协方差约束控制及应用[J]. 化工学报, 2023, 74(3): 1216-1227. |
[13] | 王雅琳, 潘雨晴, 刘晨亮. 基于GSA-LSTM动态结构特征提取的间歇过程监测方法[J]. 化工学报, 2022, 73(9): 3994-4002. |
[14] | 高学金, 程琨, 韩华云, 高慧慧, 齐咏生. 基于中心损失的条件生成式对抗网络的冷水机组故障诊断[J]. 化工学报, 2022, 73(9): 3950-3962. |
[15] | 肖皓宇, 杨海平, 张雄, 陈应泉, 王贤华, 陈汉平. 塑料催化热解制备高附加值产品的研究进展[J]. 化工学报, 2022, 73(8): 3461-3471. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||