化工学报 ›› 2019, Vol. 70 ›› Issue (5): 1815-1822.DOI: 10.11949/j.issn.0438-1157.20181005
收稿日期:
2018-09-10
修回日期:
2019-03-05
出版日期:
2019-05-05
发布日期:
2019-05-05
通讯作者:
陈清林
作者简介:
<named-content content-type="corresp-name">汪勤</named-content>(1990—),女,博士研究生,<email>wangq356@mail2.sysu.edu.cn</email>|陈清林(1964—),男,博士,教授,<email>chqlin@mail.sysu.edu.cn</email>
基金资助:
Qin WANG(),Bingjian ZHANG,Chang HE,Qinglin CHEN()
Received:
2018-09-10
Revised:
2019-03-05
Online:
2019-05-05
Published:
2019-05-05
Contact:
Qinglin CHEN
摘要:
以NRTL活度系数模型为基础,利用Aspen Plus对不同单组分萃取剂回收芳烃的萃取精馏装置进行了全流程模拟和工艺操作参数优化。综合考虑各操作变量及其关联,提出了基于局部耦合参数迭代优化的整体协同优化策略,在保证分离要求的条件下,以能耗为目标,对萃取精馏塔(EDC)、溶剂回收塔(ERC)的进料位置、ERC回流比等关键操作参数进行优化,建立过程能耗的物性关联模型。通过分析不同溶剂对芳烃萃取精馏过程能耗和分离效果的影响,提出了基于能耗目标的芳烃萃取精馏溶剂评价模型,结果表明影响芳烃萃取精馏过程能耗的关键物性为溶剂的分子量及常压沸点,所建立的过程能耗关联模型具有较高的关联性,其R 2均大于0.9,可有效指导萃取精馏溶剂选择,为计算机辅助分子设计提供简化的目标函数。
中图分类号:
汪勤, 张冰剑, 何畅, 陈清林. 基于能量目标的芳烃萃取精馏溶剂评价模型[J]. 化工学报, 2019, 70(5): 1815-1822.
Qin WANG, Bingjian ZHANG, Chang HE, Qinglin CHEN. Solvent evaluation model base on energy consumption objective for aromatic extraction distillation units[J]. CIESC Journal, 2019, 70(5): 1815-1822.
溶剂组成 | F Solvent/% | T bub/℃ | ɑij |
---|---|---|---|
无溶剂 | 80 | 0.81 | |
环丁砜 | 87.8 | 121 | 4.2 |
环丁砜-0.8%H2O | 87.8 | 113 | 4.7 |
环丁砜-10%COS | 87.8 | 125 | 3.6 |
表1 甲基环己烷(i)-苯(j)相对挥发度随溶剂的变化[25]
Table 1 Relative volatility of methyl cyclohexane (i) and benzene (j) varying with different solutions[25]
溶剂组成 | F Solvent/% | T bub/℃ | ɑij |
---|---|---|---|
无溶剂 | 80 | 0.81 | |
环丁砜 | 87.8 | 121 | 4.2 |
环丁砜-0.8%H2O | 87.8 | 113 | 4.7 |
环丁砜-10%COS | 87.8 | 125 | 3.6 |
设备 | 操作参数 | 值 |
---|---|---|
EDC[border:border-top:solid;] | 原料S2进料状态 | 饱和气相 |
塔板数 | 固定值 | |
塔顶/底压力/MPa | 0.07/0.075 | |
ERC | 塔板数 | 固定值 |
塔顶/底压力/MPa | -0.05/-0.025 |
表2 装置主要操作条件
Table 2 Typical operating conditions of process
设备 | 操作参数 | 值 |
---|---|---|
EDC[border:border-top:solid;] | 原料S2进料状态 | 饱和气相 |
塔板数 | 固定值 | |
塔顶/底压力/MPa | 0.07/0.075 | |
ERC | 塔板数 | 固定值 |
塔顶/底压力/MPa | -0.05/-0.025 |
溶剂 | 分子式 | M/(g?mol-1) | T b/K | Q EDCR/(GJ?h-1) | Q ERCR/(GJ?h-1) | R ERC | F S/(kmol?h-1) |
---|---|---|---|---|---|---|---|
N-methyl-2-pyrrolidone | C5H9NO | 99.130 | 477.420 | 5.115 | 5.561 | 1.096 | 288.220 |
N,N-dimethylformamide | C3H7NO | 73.100 | 425.150 | 5.170 | 5.205 | 1.881 | 362.223 |
N-formylmorphol | C5H9NO2 | 115.130 | 513.150 | 5.417 | 9.010 | 1.440 | 242.481 |
triethylene glycol | C6H14O4 | 150.170 | 561.500 | 5.873 | 13.701 | 1.381 | 193.689 |
tetraethylene glycol | C8H18O5 | 194.230 | 602.700 | 6.180 | 15.707 | 0.248 | 175.638 |
dimethyl sulfone | C2H6OS | 78.130 | 464.000 | 4.943 | 9.312 | 3.060 | 344.661 |
tetramethylene sulfone | C4H8O2S | 120.170 | 560.450 | 5.275 | 9.688 | 0.847 | 260.632 |
furfural | C5H4O2 | 96.090 | 434.850 | 5.033 | 4.824 | 1.588 | 349.152 |
aminobenzene | C6H7N | 93.130 | 457.150 | 5.039 | 10.448 | 3.418 | 272.229 |
methyl benzoate | C8H8O2 | 136.150 | 472.650 | 5.256 | 4.810 | 0.708 | 258.181 |
2-pyrrolidone | C4H7NO | 85.110 | 524.320 | 5.175 | 12.041 | 2.852 | 292.076 |
glyceryl triacetate | C9H14O6 | 218.210 | 532.150 | 6.061 | 10.541 | 0.551 | 180.986 |
quinoline | C9H7N | 129.160 | 510.310 | 5.332 | 6.189 | 0.452 | 254.335 |
benzyl acetate | C9H10O2 | 150.177 | 487.150 | 5.472 | 4.283 | 14.790 | 230.040 |
phenol | C6H6O | 94.113 | 454.990 | 5.094 | 14.094 | 4.946 | 275.459 |
N-hexyl-acetate | C8H16O2 | 144.214 | 444.650 | 5.351 | 7.084 | 2.000 | 219.166 |
methyl isobutyl ketone | C6H12O | 100.161 | 389.150 | 6.330 | 12.681 | 5.384 | 360.443 |
表3 苯-环己烷萃取精馏过程溶剂物性及能耗
Table 3 Physical property and energy consume of different solvents for benzene-cyclohexane extractive distillation process
溶剂 | 分子式 | M/(g?mol-1) | T b/K | Q EDCR/(GJ?h-1) | Q ERCR/(GJ?h-1) | R ERC | F S/(kmol?h-1) |
---|---|---|---|---|---|---|---|
N-methyl-2-pyrrolidone | C5H9NO | 99.130 | 477.420 | 5.115 | 5.561 | 1.096 | 288.220 |
N,N-dimethylformamide | C3H7NO | 73.100 | 425.150 | 5.170 | 5.205 | 1.881 | 362.223 |
N-formylmorphol | C5H9NO2 | 115.130 | 513.150 | 5.417 | 9.010 | 1.440 | 242.481 |
triethylene glycol | C6H14O4 | 150.170 | 561.500 | 5.873 | 13.701 | 1.381 | 193.689 |
tetraethylene glycol | C8H18O5 | 194.230 | 602.700 | 6.180 | 15.707 | 0.248 | 175.638 |
dimethyl sulfone | C2H6OS | 78.130 | 464.000 | 4.943 | 9.312 | 3.060 | 344.661 |
tetramethylene sulfone | C4H8O2S | 120.170 | 560.450 | 5.275 | 9.688 | 0.847 | 260.632 |
furfural | C5H4O2 | 96.090 | 434.850 | 5.033 | 4.824 | 1.588 | 349.152 |
aminobenzene | C6H7N | 93.130 | 457.150 | 5.039 | 10.448 | 3.418 | 272.229 |
methyl benzoate | C8H8O2 | 136.150 | 472.650 | 5.256 | 4.810 | 0.708 | 258.181 |
2-pyrrolidone | C4H7NO | 85.110 | 524.320 | 5.175 | 12.041 | 2.852 | 292.076 |
glyceryl triacetate | C9H14O6 | 218.210 | 532.150 | 6.061 | 10.541 | 0.551 | 180.986 |
quinoline | C9H7N | 129.160 | 510.310 | 5.332 | 6.189 | 0.452 | 254.335 |
benzyl acetate | C9H10O2 | 150.177 | 487.150 | 5.472 | 4.283 | 14.790 | 230.040 |
phenol | C6H6O | 94.113 | 454.990 | 5.094 | 14.094 | 4.946 | 275.459 |
N-hexyl-acetate | C8H16O2 | 144.214 | 444.650 | 5.351 | 7.084 | 2.000 | 219.166 |
methyl isobutyl ketone | C6H12O | 100.161 | 389.150 | 6.330 | 12.681 | 5.384 | 360.443 |
图3 苯-环己烷萃取精馏过程能耗、操作参数及物性关联关系
Fig.3 Relation of energy consumption, operating parameters and physical properties for benzene-cyclohexane extractive distillation process
关联关系 | p 00 | p 10 | p 01 | p 20 | p 11 | p 02 | R 2 |
---|---|---|---|---|---|---|---|
N min,ERC-R ERC,R min,ERC | 0.9433 | 0.04556 | 1.502 | -0.01314 | 0.2514 | -0.5201 | 0.9889 |
F S-ΔH V,M | 1842 | -50.36 | -5.63 | 0.4307 | 0.0813 | 0.002913 | 0.9218 |
Q solvent-T b,M | 9.666 | 3.203 | 1.134 | 0.3232 | 0.6963 | -0.1054 | 0.9919 |
表4 苯-环己烷萃取精馏过程物性及操作参数关联参数
Table 4 Regression parameter of operating parameters vs physical properties for benzene-cyclohexane extractive distillation process
关联关系 | p 00 | p 10 | p 01 | p 20 | p 11 | p 02 | R 2 |
---|---|---|---|---|---|---|---|
N min,ERC-R ERC,R min,ERC | 0.9433 | 0.04556 | 1.502 | -0.01314 | 0.2514 | -0.5201 | 0.9889 |
F S-ΔH V,M | 1842 | -50.36 | -5.63 | 0.4307 | 0.0813 | 0.002913 | 0.9218 |
Q solvent-T b,M | 9.666 | 3.203 | 1.134 | 0.3232 | 0.6963 | -0.1054 | 0.9919 |
图4 甲苯-正庚烷能耗、操作参数及物性关联关系
Fig.4 Relation of energy consumption, operating parameters and physical properties for toluene-n-heptane extractive distillation process
关联关系 | p 00 | p 10 | p 01 | p 20 | p 11 | p 02 | R 2 |
---|---|---|---|---|---|---|---|
N min,ERC-R ERC,R min,ERC | 1.074 | 0.07526 | 2.27 | -0.0224 | 0.2504 | -0.6305 | 0.9849 |
F S-ΔH V,M | -73.88 | 14.31 | -0.7569 | -1.369 | -0.1749 | 0.003865 | 0.9138 |
Q solvent-T b,M | 5.302 | -0.06346 | 0.05997 | 0.0001166 | -0.0001447 | 9.862×10-5 | 0.9742 |
表5 甲苯-正庚烷萃取精馏过程物性及操作参数关联参数
Table 5 Regression parameter of operating parameters vs physical properties for toluene-n-heptane extractive distillation process
关联关系 | p 00 | p 10 | p 01 | p 20 | p 11 | p 02 | R 2 |
---|---|---|---|---|---|---|---|
N min,ERC-R ERC,R min,ERC | 1.074 | 0.07526 | 2.27 | -0.0224 | 0.2504 | -0.6305 | 0.9849 |
F S-ΔH V,M | -73.88 | 14.31 | -0.7569 | -1.369 | -0.1749 | 0.003865 | 0.9138 |
Q solvent-T b,M | 5.302 | -0.06346 | 0.05997 | 0.0001166 | -0.0001447 | 9.862×10-5 | 0.9742 |
1 | 范景新, 臧甲忠, 于海斌, 等 . 重芳烃轻质化研究进展[J]. 工业催化, 2015, 23(9): 666-673. |
Fan J X , Zang J Z , Yu H B , et al . Research progress in conversion of heavy aromatics to light ones[J]. Industrial Catalysis, 2015, 23(9): 666-673. | |
2 | 段然, 巩雁军, 孔德嘉, 等 . 轻烃芳构化催化剂的研究进展[J]. 石油学报(石油加工), 2013, 29(4): 726-737. |
Duan R , Gong Y J , Kong D J , et al . Development of the catalyst for light paraffins aromatization[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2013, 29(4): 726-737. | |
3 | 智研咨询集团 . 2018—2024年中国PX行业市场全景评估及投资潜力研究报告[EB/OL]. 北京: 智妍咨询集团, 2018[2018-10-05]. http: // . |
Zhiyan Consultative Group . Report of Panoramic Evaluation and Investment Potential Research for PX Industry Market in China from 2018 to 2024[ EB/OL ]. Beijing: Zhiyan Consultative Group, 2018[2018-10-05]. http: // . | |
4 | Rahimpour M R , Jafari M , Iranshahi D . Progress in catalytic naphtha reforming process: a review[J]. Appl. Energ., 2013, 109(2): 79-93. |
5 | 韩凤山, 林克之 . 世界芳烃生产技术的发展趋势[J]. 当代石油石化, 2006, 14(5): 30-35. |
Han F S , Lin K Z . Development trends of aromatic production and technology in the world[J]. Petroleum & Petrochemical Today, 2006, 14(5): 30-35. | |
6 | UOP . Aromatics[EB/OL]. New York: Honeywell, 2013[2018-10-05]. https: // . |
7 | 袁天聪 . 芳烃抽提工艺评析[J].石油化工设计, 2003, 20(4): 5-8. |
Yuan T C . Summary of aromatics extraction process[J]. Petrochemical Design, 2003, 20(4): 5-8. | |
8 | 徐春明, 杨朝合, 林世雄 . 石油炼制工程[M]. 北京: 石油工业出版社, 2009: 557-569. |
Xu C M , Yang Z H , Lin S X . Petroleum Refining Engineering[M]. Beijing: Petroleum Industry Press, 2009: 557-569. | |
9 | Ho T L , Fieser M , Fieser L . Fieser and Fieser’s Reagents for Organic Synthesis: Tetramethylene Sulfone (Sulfolane) [M]. New York: John Wiley & Sons Inc., 2006: 23. |
10 | Wittig R , Lohmann J , Gmehling J . Prediction of phase equilibria and excess properties for systems with sulfones[J]. AIChE J., 2010, 49(2): 530-537. |
11 | Wang Z R , Huang L , Xia S Q , et al . Isobaric (vapour + liquid) equilibria for sulfolane with toluene, ethylbenzene, and isopropylbenzene at 101.33 kPa [J]. J. Chem. Thermodyn., 2011, 43(12): 1865-1869. |
12 | Santiago R S , Aznar M . Liquid-liquid equilibria for quaternary mixtures of nonane + undecane + (benzene or toluene or m-xylene) + sulfolane at 298.15 and 313.15 K [J]. Fluid Phase Equilib., 2007, 253(2): 137-141. |
13 | Doulabi F S M , Mohsen-Nia M . Ternary liquid-liquid equilibria for systems of (sulfolane + toluene or chloronaphthalene + octane)[J]. J. Chem. Eng. Data, 2006, 51(4): 1431-1435. |
14 | Ko M , Im J , Sung J Y , et al . Liquid-liquid equilibria for the binary systems of sulfolane with alkanes[J]. J. Chem. Eng. Data, 2007, 52(4): 34-38. |
15 | Awwad A M , Al-Dujaili A H , Al-Haideri A M A . Liquid–liquid equilibria for pseudo-ternary systems: (sulfolane + 2-ethoxyethanol) + octane + toluene at 293.15 K[J]. Fluid Phase Equilib., 2008, 270(1/2): 10-14. |
16 | Wisniak J , Ortega J , Fernández L . A fresh look at the thermodynamic consistency of vapour-liquid equilibria data[J]. J. Chem. Thermodyn., 2017, 105: 385-395. |
17 | 汪勤, 张冰剑, 何畅, 等 . 环丁砜萃取精馏过程模拟分析及工艺参数优化[J]. 化工学报, 2017, 68(5): 1969-1976. |
Wang Q , Zhang B J , He C , et al . Process simulation and optimization of sulfolane extractive distillation[J]. CIESC Journal, 68(5): 1969-1976. | |
18 | Choi Y J , Cho K W , Cho B W , et al . Optimization of the sulfolane extraction plant based on modeling and simulation [J]. J. Chem. Eng., 2000, 17(6): 712-718. |
19 | Li L M , Tu Y Q , Sun L Y , et al . Enhanced efficient extractive distillation by combining heat-integrated technology and intermediate heating[J]. Ind. Eng. Chem. Res., 2016, 55(32): 8837-8847. |
20 | Berg L , Yeh A . Separation of m-xylene from o-xylene by extractive distillation [J]. Chem. Eng. Commun., 2012, 54(1-6): 149-159. |
21 | Miyano Y , Henry S . Constants and infinite dilution activity coefficients of propane, propene, butane, isobutene, 1-butene, isobutane, trans-2-butene and 1, 3-butadiene in 1-propanol at T (260 to 340) K[J]. J. Chem. Thermodyn., 2004, 36(2): 101-106. |
22 | Krummen M , Gmehling J . Measurement of activity coefficients at infinite dilution in N-methyl-2-pyrrolidone and N-formylmorpholine and their mixtures with water using the dilutor technique[J]. Fluid Phase Equilib., 2004, 215(2): 283-294. |
23 | Lek-Utaiwana P , Suphanit B , Douglas P L , et al . Design of extractive distillation for the separation of close-boiling mixtures: solvent selection and column optimization[J]. Comput. Chem. Eng., 2011, 35(6): 1088-1100. |
24 | Lyu Z , Zhou T , Chen L , et al . Simulation based ionic liquid screening for benzene–cyclohexane extractive separation[J]. Chem. Eng. Sci., 2014, 113(13): 45-53. |
25 | 董文威, 傅吉全 . 苯-环己烷体系萃取精馏溶剂的计算机筛选[J]. 计算机与应用化学, 2011, 28(6): 757-760. |
Dong W W , Fu J Q . Solvents selection by using of computer in extractive distillation separation for the system of benzene - cyclohexane[J]. Computers and Applied Chemistry, 2011, 28(6): 757-760. | |
26 | Chen B H , Lei Z G , Li Q S , et al . Application of CAMD in separating hydrocarbons by extractive distillation[J]. AIChE J., 2010, 51(12): 3114-3121. |
27 | Qin J W , Ye Q , Xiong X J , et al . Control of benzene-cyclohexane separation system via extractive distillation using sulfolane as entrainer [J]. Ind. Eng. Chem. Res., 2013, 52(31): 10754-10766. |
28 | Aniya V , De D , Satyavathi B . A comprehensive approach towards dehydration of tert-butyl alcohol by extractive distillation: entrainer selection, thermodynamic modeling and process optimization[J]. Ind. Eng. Chem. Res., 2016, 55(25): 6982-6995. |
29 | Kossack S , Kraemer K , Gani R , et al . A systematic synthesis framework for extractive distillation processes[J]. Chem. Eng. Res. Des., 2008, 86(7): 781–792. |
30 | 刘家祺 . 传质分离过程[M]. 北京: 高等教育出版社, 2005: 8-21. |
Liu J Q . Separation Process of Mass Transfer[M]. Beijing: Higher Education Press, 2005: 8-21. | |
31 | Henley E J , Seader J D , Roper D K . Separation Process Principles[M]. New York: John Wiley & Sons Inc., 2002: 46. |
32 | Renon H , Prausnitz J M . Local compositions in thermodynamic excess functions for liquid mixtures [J]. AIChE J., 1968, 14(1): 135-144. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[3] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[4] | 常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337. |
[5] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[6] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[7] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[8] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[9] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[10] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[11] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[12] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[13] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[14] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[15] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||