1 |
Nastase V, Strube M. Transforming Wikipedia into a large scale multilingual concept network[J]. Artificial Intelligence, 2013, 194: 62-85.
|
2 |
Li B Y, Li Y X, Wang H G, et al. Compensation of automatic weighing error of belt weigher based on BP neural network[J].Measurement, 2018, 129: 625-632.
|
3 |
Ming Y W, Zhu E, Wang M, et al. DMP-ELMs: data and model parallel extreme learning machines for large-scale learning tasks[J]. Neurocomputing, 2018, 320: 85-97.
|
4 |
Ding S F, Su C Y, Yu J Z. An optimizing BP neural network algorithm based on genetic algorithm[J]. Artificial Intelligence Review, 2011, 36(2): 153-162.
|
5 |
Moallem P, Monadjemi S A. An efficient MLP-learning algorithm using parallel tangent gradient and improved adaptive learning rates[J]. Connection Science, 2010, 22(4): 373-392.
|
6 |
Zhao H Q, Zeng X P, Zhang J S. Adaptive reduced feedback FLNN filter for active control of nonlinear noise process[J].Digital Signal Processing, 2010, 90: 834-847.
|
7 |
朱群雄, 张晓晗, 顾祥柏, 等. 基于特征提取的函数连接神经网络研究及其化工过程建模应用[J]. 化工学报, 2017, 69(3): 907-912.
|
|
Zhu Q X, Zhang X H, Gu X B, et al. Research and application of feature extraction derived functional link neural network[J]. Journal of Chemical Industry and Engineering, 2017, 69(3): 907-912.
|
8 |
Zhao H Q, Zeng X P, Zhang J S, et al. An adaptive decision feedback equalizer based on the combination of the FIR and FLNN[J]. Digital Signal Processing, 2011, 21: 679-689.
|
9 |
Pao Y. Adaptive pattern recognition and neural networks[J]. Neural Networks, 1989, 4(1): 124-126.
|
10 |
He Y L, Xu Y, Geng Z Q, et al. Hybrid robust model based on an improved functional link neural network integrating with partial least square (IFLNN-PLS) and its application to predicting key process variables[J]. ISA Transactions, 2016, 61: 155-166.
|
11 |
Vuković N, Petrović M, Miljković Z. A comprehensive experimental evaluation of orthogonal polynomial expanded random vector functional link neural networks for regression[J]. Applied Soft Computing, 2018, 70: 1083-1096.
|
12 |
Kumar L, Rath S K. Hybrid functional link artificial neural network approach for predicting maintainability of object-oriented software[J]. Journal of Systems and Software, 2016, 121: 170-190.
|
13 |
Majhi R, Panda G, Sahoo G. Development and performance evaluation of FLANN based model for forecasting of stock markets[J]. Expert systems with Applications, 2009, 36(3): 6800-6808.
|
14 |
Dehuri S, Roy R, Cho S B, et al. An improved swarm optimized functional link artificial neural network (ISO-FLANN) for classification[J]. Journal of Systems and Software, 2012, 85(6): 1333-1345.
|
15 |
Wu C F, Lin C J, Lee C Y. A functional neural fuzzy network for classification applications[J]. Expert Systems with Applications, 2011, 38(5): 6202-6208.
|
16 |
Yang X J, Wang L. A modified Tikhonov regularization method[J]. Journal of Computational and Applied Mathematics, 2015, 288: 180-192.
|
17 |
杨浩, 马建红. 正则化参数求解方法研究[J]. 计算机测量与控制, 2017, 25(8): 226-229.
|
|
Yang H, Ma J H. Research on method of regularization parameter solution[J]. Computer Measurement & Control, 2017, 25(8): 226-229.
|
18 |
Iosifidis A, Tefas A, Pitas I. DropELM: fast neural network regularization with Dropout and DropConnect[J]. Neurocomputing, 2015, 162: 57-66.
|
19 |
Gu B, Sheng V S. A robust regularization path algorithm for ν-support vector classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 28(5): 1241-1248.
|
20 |
Das A, Maiti J, Banerjee R N. Process control strategies for a steel making furnace using ANN with Bayesian regularization and ANFIS[J]. Expert systems with Applications, 2010, 37(2): 1075-1085.
|
21 |
Scardapane S, Comminiello D, Hussain A, et al. Group sparse regularization for deep neural networks[J]. Neurocomputing, 2017, 241: 81-89.
|
22 |
Kumar M, Singh S, Rath S K. Classification of microarray data using functional link neural network[J]. Procedia Computer Science, 2015, 57: 727-737.
|
23 |
李海波, 潘丰. 基于FLNN的多粘菌素发酵过程建模[J]. 江南大学学报(自然科学版), 2004, 3(3): 256-260.
|
|
Li H B, Pan F. Modeling the mycetozoan fermentation based on the functional-linked neural network[J]. Journal of Southern Yangtze University (Natural Science Edition), 2004, 3(3): 256-260.
|
24 |
Dehuri S, Cho S B. Evolutionarily optimized features in functional link neural network for classification[J]. Expert Systems with Applications, 2010, 37(6): 4379-4391.
|
25 |
吕久旭, 吴乐南. 基于函数连接型神经网络的非线性滤波[J]. 长春工业大学学报, 2006, 27(4): 305-307.
|
|
Lyu J X, Wu L N. Nonlinear filtering based on function connected neural network[J]. Journal of Changchun University of Technology, 2006, 27(4): 305-307.
|
26 |
叶世伟, 史忠植. 神经网络原理[M]. 北京: 机械工业出版社, 2004: 10-12.
|
|
Ye S W, Shi Z Z. Neural Networks: A Comprehensive Foundation[M]. Beijing: China Machine Press, 2004: 10-12.
|
27 |
Ma C, Zhao L, Mei X, et al. Thermal error compensation of high-speed spindle system based on a modified BP neural network[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(9/10/11/12): 3071-3085.
|
28 |
时慧焯, 王希诚. 基于改进的BP神经网络的注塑成型翘曲优化设计[J]. 化工学报, 2011, 62(9): 2562-2567.
|
|
Shi H Z, Wang X C. Warpage optimization of injection modeling based on improved BP neural network[J]. CIESC Journal, 2011, 62(9): 2562-2567.
|
29 |
Ghazali R, Bakar Z A, Hassim Y M M, et al. Functional link neural network with modified cuckoo search training algorithm for physical time series forecasting[C]//International Conference on Intelligent Computing. Springer, Cham, 2014: 285-291.
|
30 |
Haykin S. 神经网络与机器学习[M]. 申富饶, 徐烨, 郑俊, 等译. 北京: 机械工业出版社, 2011: 198-210.
|
|
Haykin S. Neural Networks and Learning Machines[M]. Shen F R, Xu Y, Zheng J, et al. trans. Beijing: China Machine Press, 2011: 198-210.
|