化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1871-1880.DOI: 10.11949/0438-1157.20191000
收稿日期:
2019-09-05
修回日期:
2019-12-09
出版日期:
2020-04-05
发布日期:
2020-04-05
通讯作者:
李锦春
作者简介:
李梦迪(1994—),男,硕士研究生,基金资助:
Mengdi LI(),Bo WANG,Zhehui WANG,Ye ZHANG,Rong YANG,Jinchun LI()
Received:
2019-09-05
Revised:
2019-12-09
Online:
2020-04-05
Published:
2020-04-05
Contact:
Jinchun LI
摘要:
以六氯环三磷腈、对羟基苯甲醛、苯胺及亚磷酸二乙酯等原料,成功合成阻燃剂六(4-苯胺基次甲基苯氧基-亚磷酸二乙酯基)环三磷腈(HADPPCP),用于阻燃基于苹果酸多元醇的聚氨酯硬泡。HADPPCP具有良好的热稳定性和成炭性,氮气气氛下的初始分解温度为191.9℃,700℃时的残炭量高到46.8%(质量)。HADPPCP的加入可以改善聚氨酯硬泡的热稳定性、阻燃性能和燃烧行为。添加25%(质量)的HADPPCP可以将聚氨酯泡沫的氧指数从18%提高到25%,最大热释放速率和总热释放量分别从230 kW/m2和20.1 MJ/m2降低至213 kW/m2和16.6 MJ/m2,总产烟量从10.5 m2下降到5.3 m2。
中图分类号:
李梦迪, 王波, 王哲慧, 张晔, 杨荣, 李锦春. 基于环三磷腈磷氮阻燃剂的合成及其在聚氨酯泡沫的应用[J]. 化工学报, 2020, 71(4): 1871-1880.
Mengdi LI, Bo WANG, Zhehui WANG, Ye ZHANG, Rong YANG, Jinchun LI. Synthesis of phosphorus-nitrogen flame retardant based on cyclophosphonate and its application on rigid polyurethane foam[J]. CIESC Journal, 2020, 71(4): 1871-1880.
Sample | PU-0%FR | PU-15%FR | PU-20%FR | PU-25%FR |
---|---|---|---|---|
malic acid based polyol | 100 | 100 | 100 | 100 |
AK8805 | 2 | 2 | 2 | 2 |
PC-8 | 1 | 1 | 1 | 1 |
HCFC-141b | 20 | 20 | 20 | 20 |
H2O | 1 | 1 | 1 | 1 |
HADPPCP | 0 | 45.3 | 64.2 | 85.6 |
PM-200 | 132.7 | 132.7 | 132.7 | 132.7 |
表1 阻燃聚氨酯泡沫的制备配方
Table 1 Preparation formula of flame retardant polyurethane foam
Sample | PU-0%FR | PU-15%FR | PU-20%FR | PU-25%FR |
---|---|---|---|---|
malic acid based polyol | 100 | 100 | 100 | 100 |
AK8805 | 2 | 2 | 2 | 2 |
PC-8 | 1 | 1 | 1 | 1 |
HCFC-141b | 20 | 20 | 20 | 20 |
H2O | 1 | 1 | 1 | 1 |
HADPPCP | 0 | 45.3 | 64.2 | 85.6 |
PM-200 | 132.7 | 132.7 | 132.7 | 132.7 |
Sample | Density/ (kg/m3) | Compressive strength/ kPa | Thermal conductivity/ (W/(m·K)) |
---|---|---|---|
PU-0%FR | 37 | 155 | 0.0227 |
PU-15%FR | 38 | 122 | 0.0232 |
PU-20%FR | 41 | 110 | 0.0253 |
PU-25%FR | 46 | 105 | 0.0277 |
表2 聚氨酯泡沫的基本性能
Table 2 Basic properties of polyurethane foam
Sample | Density/ (kg/m3) | Compressive strength/ kPa | Thermal conductivity/ (W/(m·K)) |
---|---|---|---|
PU-0%FR | 37 | 155 | 0.0227 |
PU-15%FR | 38 | 122 | 0.0232 |
PU-20%FR | 41 | 110 | 0.0253 |
PU-25%FR | 46 | 105 | 0.0277 |
T5%/℃ | T50% /℃ | Tmax /℃ | Residues at 700℃/%(mass) | ||
---|---|---|---|---|---|
Step1 | Step2 | Step3 | |||
191.9 | 515.8 | 210.0 | 292.7 | 466.6 | 46.8 |
表3 阻燃剂HADPPCP的热重分析结果
Table 3 Thermal properties of HADPPCP
T5%/℃ | T50% /℃ | Tmax /℃ | Residues at 700℃/%(mass) | ||
---|---|---|---|---|---|
Step1 | Step2 | Step3 | |||
191.9 | 515.8 | 210.0 | 292.7 | 466.6 | 46.8 |
Sample | T5%/℃ | T50%/℃ | Tmax/℃ | Residues at 700℃/%(mass) | ||
---|---|---|---|---|---|---|
Step1 | Step2 | Step3 | ||||
PU-0%FR | 247.8 | 374.4 | — | 292.0 | 414.1 | 24.6 |
PU-15%FR | 179.4 | 398.0 | 198.5 | 300.8 | 438.7 | 31.4 (27.9)① |
PU-20%FR | 177.0 | 402.7 | 199.6 | 295.9 | 438.1 | 32.8 (29.0)① |
PU-25%FR | 174.9 | 424.2 | 198.7 | 289.7 | 420.0 | 37.5 (30.2)① |
表4 阻燃苹果酸多元醇基聚氨酯泡沫的热重分析结果
Table 4 Thermal properties of flame retardant malic acid polyol based PURF
Sample | T5%/℃ | T50%/℃ | Tmax/℃ | Residues at 700℃/%(mass) | ||
---|---|---|---|---|---|---|
Step1 | Step2 | Step3 | ||||
PU-0%FR | 247.8 | 374.4 | — | 292.0 | 414.1 | 24.6 |
PU-15%FR | 179.4 | 398.0 | 198.5 | 300.8 | 438.7 | 31.4 (27.9)① |
PU-20%FR | 177.0 | 402.7 | 199.6 | 295.9 | 438.1 | 32.8 (29.0)① |
PU-25%FR | 174.9 | 424.2 | 198.7 | 289.7 | 420.0 | 37.5 (30.2)① |
Sample | LOI/% | Self-extinguishing/s |
---|---|---|
PU-0%FR | 18 | 6 |
PU-15%FR | 23 | 10 |
PU-20%FR | 24 | 13 |
PU-25%FR | 25 | 11 |
表5 阻燃聚氨酯泡沫的极限氧指数(LOI)
Table 5 LOI values of flame-retardant RPUF
Sample | LOI/% | Self-extinguishing/s |
---|---|---|
PU-0%FR | 18 | 6 |
PU-15%FR | 23 | 10 |
PU-20%FR | 24 | 13 |
PU-25%FR | 25 | 11 |
Sample | TTI/s | PHRR1/(kW/m2) | PHRR2/(kW/m2) | TTPHRR/s | THR/(MJ/m2) | TSP/m2 |
---|---|---|---|---|---|---|
PU-0%FR | 1 | 230 | 68 | 35 | 20.1 | 10.5 |
PU-25%FR | 2 | 213 | — | 20 | 16.6 | 5.3 |
表6 无卤阻燃苹果酸多元醇基聚氨酯泡沫的锥形量热分析数据
Table 6 Cone calorimeter data of flame retardant malic acid polyol based PURF
Sample | TTI/s | PHRR1/(kW/m2) | PHRR2/(kW/m2) | TTPHRR/s | THR/(MJ/m2) | TSP/m2 |
---|---|---|---|---|---|---|
PU-0%FR | 1 | 230 | 68 | 35 | 20.1 | 10.5 |
PU-25%FR | 2 | 213 | — | 20 | 16.6 | 5.3 |
1 | Ji D, Fang Z, He W, et al. Polyurethane rigid foams formed from different soy-based polyols by the ring opening of epoxidised soybean oil with methanol, phenol, and cyclohexanol[J]. Industrial Crops and Products, 2015, 74: 76-82. |
2 | Kakroodi A R, Khazabi M, Maynard K, et al. Soy-based polyurethane spray foam insulations for light weight wall panels and their performances under monotonic and static cyclic shear forces[J]. Industrial Crops and Products, 2015, 74: 1-8. |
3 | Mutlu H, Meier M A R, Metzger J O, et al. Castor oil as a renewable resource for the chemical industry[J]. European Journal of Lipid Science and Technology, 2010, 112(1): 10-30. |
4 | Zieleniewska M, Leszczyński M K, Kurańska M, et al. Preparation and characterisation of rigid polyurethane foams using a rapeseed oil-based polyol[J]. Industrial Crops and Products, 2015, 74: 887-897. |
5 | Kurańska M, Prociak A, Kirpluks M, et al. Polyurethane-polyisocyanurate foams modified with hydroxyl derivatives of rapeseed oil[J]. Industrial Crops and Products, 2015, 74: 849-857. |
6 | Ferri E, Talentino D. Bio-resins from cashew nutshell oil[J]. Reinforced Plastics, 2011, 55(3): 29-31. |
7 | Tanaka R, Hirose S, Hatakeyama H. Preparation and characterization of polyurethane foams using a palm oil-based polyol[J]. Bioresour. Technol., 2008, 99(9): 3810-3816. |
8 | Yang R, Wang B, Xu L, et al. Synthesis and characterization of rigid polyurethane foam with dimer fatty acid-based polyols[J]. Polymer Bulletin, 2019, 76(7): 3753-3768. |
9 | Yang R, Wang B, Li M, et al. Preparation, characterization and thermal degradation behavior of rigid polyurethane foam using a malic acid based polyols[J]. Industrial Crops and Products, 2019, 136: 121-128. |
10 | Gharehbaghi A, Bashirzadeh R, Ahmadi Z. Polyurethane flexible foam fire resisting by melamine and expandable graphite: industrial approach[J]. Journal of Cellular Plastics, 2011, 47(6): 549-565. |
11 | Gupta R K, Kahol P K, Wan X, et al. Biobased polyols using thiol-ene chemistry for rigid polyurethane foams with enhanced flame-retardant properties[J]. Journal of Renewable Materials, 2017, 5(1): 1-12. |
12 | Choi S W, Ohba S, Brunovska Z, et al. Synthesis, characterization and thermal degradation of functional benzoxazine monomers and polymers containing phenylphosphine oxide[J]. Polymer Degradation and Stability, 2006, 91(5): 1166-1178. |
13 | Zima V, Svoboda J, Beneš L, et al. Synthesis and characterization of new strontium 4-carboxyphenylphosphonates[J]. Journal of Solid State Chemistry, 2007, 180(3): 929-939. |
14 | Nazir R, Gaan S. Recent developments in P (O/S) -N containing flame retardants[J]. Journal of Applied Polymer Science, 2020, 137(1): 47910. |
15 | Bai Y, Wang X, Wu D. Novel cyclolinear cyclotriphosphazene-linked epoxy resin for halogen-free fire resistance: synthesis, characterization, and flammability characteristics[J]. Industrial & Engineering Chemistry Research, 2012, 51(46): 15064-15074. |
16 | Wen P, Tai Q, Hu Y, et al. Cyclotriphosphazene-based intumescent flame retardant against the combustible polypropylene[J]. Industrial & Engineering Chemistry Research, 2016, 55(29): 8018-8024. |
17 | Mayer-Gall T, Knittel D, Gutmann J S, et al. Permanent flame retardant finishing of textiles by allyl-functionalized polyphosphazenes[J]. ACS Applied Materials & Interfaces, 2015, 7(18): 9349-9363. |
18 | Xu J, He Z, Wu W, et al. Study of thermal properties of flame retardant epoxy resin treated with hexakis[p-(hydroxymethyl) phenoxy]cyclotriphosphazene[J]. Journal of Thermal Analysis and Calorimetry, 2013, 114(3): 1341-1350. |
19 | Chen-Yang Y W, Yuan C Y, Li C H, et al. Preparation and characterization of novel flame retardant (aliphatic phosphate) cyclotriphosphazene-containing polyurethanes[J]. Journal of Applied Polymer Science, 2003, 90(5): 1357-1364. |
20 | Zhao B, Liang W J, Wang J S, et al. Synthesis of a novel bridged-cyclotriphosphazene flame retardant and its application in epoxy resin[J]. Polymer Degradation and Stability, 2016, 133: 162-173. |
21 | Liang W, Zhao B, Zhao P, et al. Bisphenol-S bridged penta (anilino) cyclotriphosphazene and its application in epoxy resins: synthesis, thermal degradation, and flame retardancy[J]. Polymer Degradation and Stability, 2017, 135: 140-151. |
22 | Modesti M, Zanella L, Lorenzetti A, et al. Thermally stable hybrid foams based on cyclophosphazenes and polyurethanes[J]. Polymer Degradation and Stability, 2005, 87(2): 287-292. |
23 | 李雄杰, 何英杰, 邹国享, 等. 六 (γ-氨丙基硅烷三醇) 环三磷腈的制备及其在膨胀阻燃聚丙烯中的应用[J]. 复合材料学报, 2017, 34(6): 1221-1229. |
Li X J, He Y J, Zou G X, et al. Synthesis of hexakis (γ-aminopropylsilanetriol) cyclotriphosphazene and application in intumescent flame retardant polypropylene[J]. Acta Materiae Compositae Sinica, 2017, 34(6): 1221-1229. | |
24 | Xu M J, Xu G R, Leng Y, et al. Synthesis of a novel flame retardant based on cyclotriphosphazene and DOPO groups and its application in epoxy resins[J]. Polymer Degradation & Stability, 2016, 123: 105-114. |
25 | Qian L J, Ye L J, Xu G Z, et al. The non-halogen flame retardant epoxy resin based on a novel compound with phosphaphenanthrene and cyclotriphosphazene double functional groups[J]. Polymer Degradation and Stability, 2011, 96(6): 1118-1124. |
26 | Yang R, Hu W, Xu L, et al. Synthesis, mechanical properties and fire behaviors of rigid polyurethane foam with a reactive flame retardant containing phosphazene and phosphate[J]. Polymer Degradation & Stability, 2015, 122: 102-109. |
27 | Yang R, Wang B, Han X, et al. Synthesis and characterization of flame retardant rigid polyurethane foam based on a reactive flame retardant containing phosphazene and cyclophosphonate[J]. Polymer Degradation and Stability, 2017, 144: 62-69. |
28 | 杨荣, 乔红, 胡文田, 等. 反应型磷氮阻燃剂/可膨胀石墨复配阻燃聚氨酯泡沫[J]. 化工学报, 2016, 67(5): 2169-2175. |
Yang R, Qiao H, Hu W T, et al. Synthesis, physical-mechanical properties and fire behaviors of polyurethane foam with reactive flame retardant and expandable graphite[J]. CIESC Journal, 2016, 67(5): 2169-2175. | |
29 | 胡文田, 杨荣, 许亮, 等. 基于环三磷腈/磷酸酯反应型磷-氮阻燃剂的合成、热降解及应用[J]. 化工学报, 2015, 66 (5): 1976-1982. |
Hu W T, Yang R, Xu L, et al. Synthesis, properties and application of reactive nitrogen-phosphorus flame retardant[J]. CIESC Journal, 2015, 66 (5): 1976-1982. | |
30 | Schartel B, Hull T R. Development of fire-retarded materials-interpretation of cone calorimeter data[J]. Fire and Materials: an International Journal, 2007, 31(5): 327-354. |
31 | Liu Y L, Hsiue G H, Lan C W, et al. Flame-retardant polyurethanes from phosphorus-containing isocyanates[J]. Journal of Polymer Science Part A Polymer Chemistry, 1997, 35(9): 1769-1780. |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[3] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[4] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[5] | 李彬, 徐正虎, 姜爽, 张天永. 双氧水催化氧化法清洁高效合成促进剂CBS[J]. 化工学报, 2023, 74(7): 2919-2925. |
[6] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[7] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[8] | 葛泽峰, 吴雨青, 曾名迅, 查振婷, 马宇娜, 侯增辉, 张会岩. 灰化学成分对生物质气化特性的影响规律[J]. 化工学报, 2023, 74(5): 2136-2146. |
[9] | 王帅, 杨富凯, 徐新宇. 阻燃型全生物基多元醇聚氨酯泡沫的制备及性能研究[J]. 化工学报, 2023, 74(3): 1399-1408. |
[10] | 王锋, 陈钰, 裴鸿艳, 刘东东, 张静, 张立新. 1,2,4-𫫇二唑类衍生物的设计、合成及抗菌活性[J]. 化工学报, 2023, 74(3): 1390-1398. |
[11] | 刘润竹, 储甜甜, 张孝阿, 王成忠, 张军营. α,ω-端羟基亚苯基氟硅聚合物的合成及性能[J]. 化工学报, 2023, 74(3): 1360-1369. |
[12] | 张梦波, 楼琳瑾, 冯艺荣, 郑雨婷, 张浩淼, 王靖岱, 阳永荣. 烷基铝氧烷合成技术研究进展[J]. 化工学报, 2023, 74(2): 525-534. |
[13] | 赵焕娟, 刘婧, 周冬雷, 林敏. 多孔材料对氢气爆轰的抑制作用[J]. 化工学报, 2023, 74(2): 968-976. |
[14] | 袁海鸥, 叶方俊, 张硕, 罗祎青, 袁希钢. 考虑中间换热器的能量集成精馏序列合成[J]. 化工学报, 2023, 74(2): 796-806. |
[15] | 李鑫, 曾少娟, 彭奎霖, 袁磊, 张香平. CO2电催化还原制合成气研究进展及趋势[J]. 化工学报, 2023, 74(1): 313-329. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||