化工学报 ›› 2023, Vol. 74 ›› Issue (5): 2136-2146.DOI: 10.11949/0438-1157.20230009
葛泽峰(), 吴雨青, 曾名迅, 查振婷, 马宇娜, 侯增辉, 张会岩()
收稿日期:
2023-01-05
修回日期:
2023-04-04
出版日期:
2023-05-05
发布日期:
2023-06-29
通讯作者:
张会岩
作者简介:
葛泽峰(1990—),男,博士后,助理研究员,gezf@seu.edu.cn
基金资助:
Zefeng GE(), Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG()
Received:
2023-01-05
Revised:
2023-04-04
Online:
2023-05-05
Published:
2023-06-29
Contact:
Huiyan ZHANG
摘要:
气化利用是实现生物质资源高效清洁利用的有效方式之一,灰化学组成是影响生物质气化的主要因素,不同无机组分对生物质气化特性的影响规律尚不完善。通过酸洗脱灰耦合灰化学模化物负载的方式,对灰化学成分的作用进行了系统的研究。结果表明,P是除Na、K之外,造成气化灰渣烧结熔融的主要因素之一;不同助剂的加入均可抑制CH4析出,酸性助剂(Si、Al、P)的添加有助于CO的生成,降低体系的冷煤气效率(CGE)和合成气品质(H2/CO);碱性助剂(Ca、Fe、Mg、K、Na)趋向于提高H2和CO2产率,对体系H2/CO改善作用显著,Fe基助剂可使其由0.75提升至1.54。
中图分类号:
葛泽峰, 吴雨青, 曾名迅, 查振婷, 马宇娜, 侯增辉, 张会岩. 灰化学成分对生物质气化特性的影响规律[J]. 化工学报, 2023, 74(5): 2136-2146.
Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties[J]. CIESC Journal, 2023, 74(5): 2136-2146.
项目 | 工业分析/%(mass, ad) | 元素分析/%(mass, ad) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
水分 | 灰分 | 挥发分 | 固定碳① | C | H | O② | N | S | ||
原料 | 6.62±0.48 | 7.56±0.61 | 68.60±2.93 | 17.22±0.82 | 38.64±0.53 | 6.86±0.36 | 38.93±1.23 | 1.20±0.16 | 0.19±0.03 | |
脱灰物料 | 4.00±0.32 | 0.08±0.01 | 81.90±1.25 | 14.02±0.36 | 44.50±0.72 | 7.65±0.22 | 42.43±1.41 | 1.13±0.08 | 0.13±0.02 |
表1 玉米秸秆的工业分析和元素分析
Table 1 Proximate and ultimate analyses of cornstalk
项目 | 工业分析/%(mass, ad) | 元素分析/%(mass, ad) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
水分 | 灰分 | 挥发分 | 固定碳① | C | H | O② | N | S | ||
原料 | 6.62±0.48 | 7.56±0.61 | 68.60±2.93 | 17.22±0.82 | 38.64±0.53 | 6.86±0.36 | 38.93±1.23 | 1.20±0.16 | 0.19±0.03 | |
脱灰物料 | 4.00±0.32 | 0.08±0.01 | 81.90±1.25 | 14.02±0.36 | 44.50±0.72 | 7.65±0.22 | 42.43±1.41 | 1.13±0.08 | 0.13±0.02 |
组分 | 质量分数/% |
---|---|
SiO2 | 45.18 |
Al2O3 | 1.16 |
CaO | 6.32 |
Fe2O3 | 1.05 |
MgO | 3.16 |
K2O | 33.86 |
Na2O | 0.45 |
P2O5 | 8.82 |
表2 秸秆灰化学组成分析
Table 2 Ash chemical composition of cornstalk
组分 | 质量分数/% |
---|---|
SiO2 | 45.18 |
Al2O3 | 1.16 |
CaO | 6.32 |
Fe2O3 | 1.05 |
MgO | 3.16 |
K2O | 33.86 |
Na2O | 0.45 |
P2O5 | 8.82 |
元素 | kx-total/(mg/kg) | kx-solid/(mg/kg) | kx-gaseous/(mg/kg) |
---|---|---|---|
Si | 32607.65 | 31738.20 | 869.45 |
Al | 36955.35 | 27600.45 | 9354.90 |
P | 30540.65 | 6592.48 | 23948.17 |
Fe | 49378.13 | 39471.68 | 9906.45 |
Ca | 50109.82 | 32843.24 | 17266.58 |
Mg | 41564.25 | 27842.16 | 13722.09 |
Na | 49862.88 | 19469.72 | 30393.16 |
K | 56875.47 | 10909.70 | 45965.77 |
表3 气固相中不同种类元素的含量
Table 3 The content of different kinds of elements in the gas-solid phase
元素 | kx-total/(mg/kg) | kx-solid/(mg/kg) | kx-gaseous/(mg/kg) |
---|---|---|---|
Si | 32607.65 | 31738.20 | 869.45 |
Al | 36955.35 | 27600.45 | 9354.90 |
P | 30540.65 | 6592.48 | 23948.17 |
Fe | 49378.13 | 39471.68 | 9906.45 |
Ca | 50109.82 | 32843.24 | 17266.58 |
Mg | 41564.25 | 27842.16 | 13722.09 |
Na | 49862.88 | 19469.72 | 30393.16 |
K | 56875.47 | 10909.70 | 45965.77 |
1 | 许光文, 姜新东, 谢英鹏, 等. "双碳"目标两步走战略与年亿吨规模减碳途径分析[J]. 中国发展, 2022, 22(2): 3-11. |
Xu G W, Jiang X D, Xie Y P, et al. Two-step strategy to achieve "double carbon" and method analysis of annual carbon reduction of 100 million tons[J]. China Development, 2022, 22(2): 3-11. | |
2 | 张会岩, 杨海平, 陆强, 等. 生物质定向热解制取高品质液体燃料、化学品和碳材料研究进展[J]. 工程热物理学报, 2021, 42(12): 3031-3044. |
Zhang H Y, Yang H P, Lu Q, et al. Progress of directional pyrolysis of biomass to produce high-quality liquid fuels, chemicals and carbon materials[J]. Journal of Engineering Thermophysics, 2021, 42(12): 3031-3044. | |
3 | 戴晓虎, 陈淑娴, 蔡辰, 等. 秸秆主流能源化技术研究与经济性分析[J]. 环境工程, 2021, 39(1): 1-17. |
Dai X H, Chen S X, Cai C, et al. Research and economic analysis of mainstream energy technologies for straw[J]. Environmental Engineering, 2021, 39(1): 1-17. | |
4 | Anniwaer A, Chaihad N, Zhang M J, et al. Hydrogen-rich gas production from steam co-gasification of banana peel with agricultural residues and woody biomass[J]. Waste Management, 2021, 125: 204-214. |
5 | AlNouss A, McKay G, Al-Ansari T. Enhancing waste to hydrogen production through biomass feedstock blending: a techno-economic-environmental evaluation[J]. Applied Energy, 2020, 266: 114885. |
6 | Zhang X Y, Zhu S J, Song W J, et al. Experimental study on conversion characteristics of anthracite and bituminous coal during preheating-gasification[J]. Fuel, 2022, 324: 124712. |
7 | Chen Q, Wei B, Chen J Q, et al. In-situ study of fractal properties of coal char particles during catalytic gasification [J]. Journal of Fuel Chemistry and Technology, 2022, 50(5): 523-529. |
8 | 张波, 张力, 杨仲卿, 等. NiO/CaO添加剂下生物质水蒸气气化特性[J]. 工程热物理学报, 2016, 37(9): 1961-1967. |
Zhang B, Zhang L, Yang Z Q, et al. Influence of NiO/CaO additive on biomass steam gasification[J]. Journal of Engineering Thermophysics, 2016, 37(9): 1961-1967. | |
9 | Czerski G, Śpiewak K, Grzywacz P, et al. Assessment of the catalytic effect of various biomass ashes on CO2 gasification of tire char[J]. Journal of the Energy Institute, 2021, 99: 170-177. |
10 | Li F H, Yu B, Li J G, et al. Exploration of potassium migration behavior in straw ashes under reducing atmosphere and its modification by additives[J]. Renewable Energy, 2020, 145: 2286-2295. |
11 | Yan L B, Cao Y, Li X Z, et al. Characterization of a dual fluidized bed gasifier with blended biomass/coal as feedstock [J]. Bioresource Technology, 2018, 254: 97-106. |
12 | Zhang Z, Liu J, Shen F H, et al. Temporal release behavior of potassium during pyrolysis and gasification of sawdust particles[J]. Renewable Energy, 2020, 156: 98-106. |
13 | Sadhwani N, Adhikari S, Eden M R, et al. Southern pines char gasification with CO2—kinetics and effect of alkali and alkaline earth metals[J]. Fuel Processing Technology, 2016, 150: 64-70. |
14 | Ge Z F, Cao X, Zha Z T, et al. The mineral transformation and molten behaviors of biomass waste ashes in gasification-melting process[J]. Fuel Processing Technology, 2022, 226: 107095. |
15 | Lu H, Bai J, Vassilev S V, et al. The crystallization behavior of anorthite in coal ash slag under gasification condition[J]. Chemical Engineering Journal, 2022, 445: 136683. |
16 | Vargas S, Frandsen F J, Dam-Johansen K. Rheological properties of high-temperature melts of coal ashes and other silicates[J]. Progress in Energy and Combustion Science, 2001, 27(3): 237-429. |
17 | Wang W, Lemaire R, Bensakhria A, et al. Review on the catalytic effects of alkali and alkaline earth metals (AAEMs) including sodium, potassium, calcium and magnesium on the pyrolysis of lignocellulosic biomass and on the co-pyrolysis of coal with biomass[J]. Journal of Analytical and Applied Pyrolysis, 2022, 163: 105479. |
18 | 刘成昌, 赵林, 孙峰, 等. 灰化方法对高碱燃料成灰特性影响的实验研究[J]. 工程热物理学报, 2022, 43(5): 1416-1421. |
Liu C C, Zhao L, Sun F, et al. Experimental study on the effects of ashing method on the ash characteristics of high-alkali fuel[J]. Journal of Engineering Thermophysics, 2022, 43(5): 1416-1421. | |
19 | Liu Y J, Yan T G, An Y, et al. Influence of water leaching on alkali-induced slagging properties of biomass straw[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1839-1849. |
20 | Zhao H L, Bai Z Q, Guo Z X, et al. In situ study of the decomposition of pyrite in coal during hydropyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2021, 154: 105024. |
21 | Ge Z F, Cao X, Zha Z T, et al. The influence of a two-step leaching pretreatment on the steam gasification properties of cornstalk waste[J]. Bioresource Technology, 2022, 358: 127403. |
22 | Chen X D, Kong L X, Bai J, et al. The key for sodium-rich coal utilization in entrained flow gasifier: the role of sodium on slag viscosity-temperature behavior at high temperatures[J]. Applied Energy, 2017, 206: 1241-1249. |
23 | Zeng M X, Ge Z F, Ma Y N, et al. On-line analysis of the correlation between gasification characteristics and microstructure of woody biowaste after hydrothermal carbonization[J]. Bioresource Technology, 2021, 342: 126009. |
24 | Singh D, Yadav S. Steam gasification with torrefaction as pretreatment to enhance syngas production from mixed food waste[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104722. |
25 | Reinmöller M, Kong L X, Laabs M, et al. Methods for the determination of composition, mineral phases, and process-relevant behavior of ashes and its modeling: a case study for an alkali-rich ash[J]. Journal of the Energy Institute, 2022, 100: 137-147. |
26 | Zha Z T, Wang K, Ge Z F, et al. Morphological and heat transfer characteristics of biomass briquette during steam gasification process[J]. Bioresource Technology, 2022, 356: 127334. |
27 | Siddiqui H, Thengane S K, Sharma S, et al. Revamping downdraft gasifier to minimize clinker formation for high-ash garden waste as feedstock[J]. Bioresource Technology, 2018, 266: 220-231. |
28 | Zhang J L, Zhang R, Bi J C. Effect of catalyst on coal char structure and its role in catalytic coal gasification[J]. Catalysis Communications, 2016, 79: 1-5. |
29 | He Q, Yu J Q, Song X D, et al. Utilization of biomass ash for upgrading petroleum coke gasification: effect of soluble and insoluble components[J]. Energy, 2020, 192: 116642. |
30 | Huang Y Q, Yin X L, Wu C Z, et al. Effects of metal catalysts on CO2 gasification reactivity of biomass char[J]. Biotechnology Advances, 2009, 27(5): 568-572. |
31 | Cao J, Xiao G, Xu X, et al. Study on carbonization of lignin by TG-FTIR and high-temperature carbonization reactor[J]. Fuel Processing Technology, 2013, 106: 41-47. |
32 | 郭学文, 张海霞, 朱治平. 准东高钠煤流化床气化特性及钠的迁移规律研究[J]. 工程热物理学报, 2017, 38(2): 440-446. |
Guo X W, Zhang H X, Zhu Z P. Fluidized bed gasification performance and sodium transformation of Zhundong high sodium coal[J]. Journal of Engineering Thermophysics, 2017, 38(2): 440-446. | |
33 | Yang J, Ma L P, Liu H P, et al. Chemical behavior of fluorine and phosphorus in chemical looping gasification using phosphogypsum as an oxygen carrier[J]. Chemosphere, 2020, 248: 125979. |
34 | Dahou T L, Defoort F, Jeguirim M, et al. Towards understanding the role of K during biomass steam gasification[J]. Fuel, 2020, 282: 118806. |
35 | Mei Y G, Wang Z Q, Zhang H, et al. In-situ study of effect of migrating alkali metals on gasification reactivity of coal char[J]. Journal of Fuel Chemistry and Technology, 2021, 49(6): 735-741. |
36 | Ge Z F, Kong L X, Bai J, et al. Crystallization kinetics and TCV prediction of coal ash slag under slag tapping conditions in an entrained flow gasifier[J]. Fuel, 2020, 272: 117723. |
[1] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[2] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[3] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[4] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[5] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[6] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[7] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[8] | 朱风, 陈凯琳, 黄小凤, 鲍银珠, 李文斌, 刘嘉鑫, 吴玮强, 高王伟. KOH改性电石渣脱除羰基硫的性能研究[J]. 化工学报, 2023, 74(6): 2668-2679. |
[9] | 刘海芹, 李博文, 凌喆, 刘亮, 俞娟, 范一民, 勇强. 羟基-炔点击化学改性半乳甘露聚糖薄膜的制备及性能研究[J]. 化工学报, 2023, 74(3): 1370-1378. |
[10] | 祖凌鑫, 胡荣庭, 李鑫, 陈余道, 陈广林. 木质生物质化学组分的碳释放产物特征和反硝化利用程度[J]. 化工学报, 2023, 74(3): 1332-1342. |
[11] | 陈俊先, 姬忠礼, 赵瑜, 张倩, 周岩, 刘猛, 刘震. 基于微波技术的天然气管道内颗粒物在线检测方法研究[J]. 化工学报, 2023, 74(3): 1042-1053. |
[12] | 吴选军, 王超, 曹子健, 蔡卫权. 数据与物理信息混合驱动的固定床吸附穿透深度学习模型[J]. 化工学报, 2023, 74(3): 1145-1160. |
[13] | 郑杰元, 张先伟, 万金涛, 范宏. 丁香酚环氧有机硅树脂的制备及其固化动力学研究[J]. 化工学报, 2023, 74(2): 924-932. |
[14] | 李鑫, 曾少娟, 彭奎霖, 袁磊, 张香平. CO2电催化还原制合成气研究进展及趋势[J]. 化工学报, 2023, 74(1): 313-329. |
[15] | 陈健鑫, 朱瑞杰, 盛楠, 朱春宇, 饶中浩. 纤维素基生物质多孔炭的制备及其超级电容器性能研究[J]. 化工学报, 2022, 73(9): 4194-4206. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 209
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 220
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||