1 |
黄道平, 刘乙奇, 李艳, 等. 软测量在污水处理过程中的研究与应用[J]. 化工学报, 2011, 62(1): 1-9.
|
|
Huang D P, Liu Y Q, Li Y, et al. Soft sensor research and its application in wastewater treatment[J]. CIESC Journal, 2011, 62(1): 1-9.
|
2 |
曹鹏飞, 罗雄麟. 化工过程软测量建模方法研究进展[J].化工学报, 2013, 64(3): 788-800.
|
|
Cao P F, Luo X L. Modeling of soft sensor for chemical process[J]. CIESC Journal, 2013, 64(3): 788-800.
|
3 |
汤健, 乔俊飞, 柴天佑, 等. 基于虚拟样本生成技术的多组分机械信号建模[J]. 自动化学报, 2018, 44(9): 35-55.
|
|
Tang J, Qiao J F, Chai T Y, et al. Modeling multiple components mechanical signals by means of virtual sample generation technique[J]. Acta Automatica Sinica, 2018, 44(9): 35-55.
|
4 |
Wang D, Liu J, Srinivasan R. Data-driven soft sensor approach for quality prediction in a refining process[J]. IEEE Transactions on Industrial Informatics, 2010, 6(1): 11-17.
|
5 |
Chao S, Fan Y, Huang D, et al. Data-driven soft sensor development based on deep learning technique[J]. Journal of Process Control, 2014, 24(3): 223–233.
|
6 |
谢代梁, 王保良, 黄志尧, 等. 主成分回归在中药过程软测量中的应用研究[J]. 仪器仪表学报, 2004, 25(z3): 671-672.
|
|
Xie D Y, Wang B L, Huang Z Y, et al. Application of principle component regression to soft-sensing of Chinese traditional medicine production process[J]. Chinese Journal of Scientific Instrument, 2004, 25(z3): 671-672.
|
7 |
刘瑞兰, 徐艳, 戎舟. 基于稀疏最小二乘支持向量机的软测量建模[J]. 化工学报, 2015, 66(4): 1402-1406.
|
|
Liu R L, Xu Y, Rong Z. Modeling soft sensor based on sparse least square support vector machine[J]. CIESC Journal, 2015, 66(4): 1402-1406.
|
8 |
Liu Y, Xiao H, Pan Y, et al. Development of multiple-step soft-sensors using a Gaussian process model with application for fault prognosis[J]. Chemometrics & Intelligent Laboratory Systems, 2016, 157: 85-95.
|
9 |
马建, 邓晓刚, 王磊. 基于深度集成支持向量机的工业过程软测量方法[J]. 化工学报, 2018, 69(3): 1121-1128.
|
|
Ma J, Deng X G, Wang L. Industrial process soft sensor method based on deep learning ensemble support vector machine[J]. CIESC Journal, 2018, 69(3): 1121-1128.
|
10 |
Liu Y Q, Liu B, Zhao X J, et al. Development of RVM-based multiple-output soft sensors with serial and parallel stacking strategies[J]. IEEE Transactions on Control Systems Technology2018, 27(6): 2727 - 2734.
|
11 |
Yao L, Ge Z Q. Deep learning of semisupervised process data with hierarchical extreme learning machine and soft sensor application[J]. IEEE Transactions on Industrial Electronics. 2017, 65(2): 1490-1498.
|
12 |
Yuan X F, Ge Z Q, Huang B, et al. Semisupervised JITL framework for nonlinear industrial soft sensing based on locally semisupervised weighted PCR[J]. IEEE Transactions on Industrial Informatics. 2016, 13(2): 532-541.
|
13 |
Zhong W M, Jiang C, Peng X, et al. Online quality prediction of industrial terephthalic acid hydropurification process using modified regularized slow-feature analysis[J]. Industrial & Engineering Chemistry Research, 2018, 57(29): 9604-9614.
|
14 |
Tu E, Zhang Y, Zhu L, et al. A graph-based semi-supervised k nearest-neighbor method for nonlinear manifold distributed data classification[J]. Information Sciences, 2016, 367/368: 673-688.
|
15 |
Li C, Zhu J, Bo Z. Max-margin deep generative models for (semi-)supervised learning[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2018, 40(11): 2672-2775.
|
16 |
Shi Y, Yao K, Hu C, et al. Semi-supervised slot tagging in spoken language understanding using recurrent transductive support vector machines[C]//2015 IEEE Workshop on Automatic Speech Recognition & Understanding. Scottsdale, AZ, USA, 2016.
|
17 |
Tanha J, Someren M V, Afsarmanesh H. Semi-supervised self-training for decision tree classifiers[J]. International Journal of Machine Learning & Cybernetics, 2017, 8(1): 355-370.
|
18 |
Zhan Y Z, Chen Y B. Co-training semi-supervised active learning algorithm with noise filter[J]. Pattern Recognition & Artificial Intelligence, 2009, 22(5): 750-755.
|
19 |
Zhou Z H, Li M. Semi-supervised regression with co-training[C]//Proceeding of the 19th International Joint Conference on Artificial Intelligence. Morgan Kaufmann Publishers Inc., 2005.
|
20 |
Bao L, Yuan Y F, Ge Z Q. Co-training partial least squares model for semi-supervised soft sensor development[J]. Chemometrics & Intelligent Laboratory Systems, 2015, 147: 75-85.
|
21 |
Goldman S, Zhou Y. Enhancing supervised learning with unlabeled data[C]// Proceedings of the Seventeenth International Conference on Machine Learning. 2000.
|
22 |
Nigam K, Ghani R. Analyzing the effectiveness and applicability of co-training[C]//International Conference on Information & Knowledge Management. 2000.
|
23 |
Zhou Z H, Li M. Tri-training: exploiting unlabeled data using three classifiers[J]. IEEE Transactions on Knowledge & Data Engineering, 2005, 17(11): 1529-1541.
|
24 |
徐欧官, 陈祥华, 傅永峰, 等. 基于模型性能评估的递推PLS建模及应用[J]. 化工学报, 2014, 65(12): 4875-4882.
|
|
Xu O G, Chen X H, Fu Y F, et al. Recursive PLS modeling based on model performance assessment and its application[J]. CIESC Journal, 2014, 65(12): 4875-4882.
|
25 |
Yang J X, Zhou J T. Prediction of chaotic time series of bridge monitoring system based on multi-step recursive BP neural network[J]. Advanced Materials Research, 2011, 159: 138-143.
|
26 |
周云龙, 孙斌, 陆军, 等. 改进BP神经网络在气液两相流流型识别中的应用[J]. 化工学报, 2005, 56(1): 110-115.
|
|
Zhou Y L, Sun B, Lu J, et al. Application of improved BP neural network in identification of air-water two-phase flow patterns[J]. Journal of Chemical Industry and Engineering(China), 2005, 56(1): 110-115.
|
27 |
Zhu F G, Lu Y Z. A new recursive learning algorithm of Bp. network[C]// Singapore International Conference on Intelligent Control and Instrumentation. Singapore, 1992.
|
28 |
Xu J, He H, Man H. DCPE co-training for classification[J]. Neurocomputing, 2012, 86(4): 75-85.
|
29 |
He H T, Luo X N, Ma F T, et al. Network traffic classification based on ensemble learning and co-training[J]. Science in China(Series F), 2009, 52(2): 338-346.
|
30 |
Li X M, Lu H L, Yang J H, et al. Semi-supervised LIBS quantitative analysis method based on co-training regression model with selection of effective unlabeled samples[J]. Plasma Science and Technology, 2018, 21(3): 034015.
|
31 |
Liu Y Q, Liu B, Zhao X J, et al. A mixture of variational canonical correlation analysis for nonlinear and quality-relevant process monitoring[J]. IEEE Transactions on Industrial Electronics, 2018, 65(8): 6478-6486.
|
32 |
Wang G, Wu J, Yin S, et al. Comparison between BP neural network and multiple linear regression method[C]//Proceeding of the First International Conference on Information Computing and Applications. 2010.
|
33 |
Liu Y, Pan Y, Huang D. Development of a novel adaptive soft-sensor using variational Bayesian PLS with accounting for online identification of key variables[J]. Industrial & Engineering Chemistry Research, 2015, 54(1): 338-350.
|
34 |
吴菁, 刘乙奇, 刘坚, 等. 基于动态多核相关向量机的软测量建模研究[J]. 化工学报, 2019, 70(4): 237-249.
|
|
Wu J, Liu Y Q, Liu J, et al. Study on the soft sensor of multi-kernel relevance vector machine based on time difference[J]. CIESC Journal, 2019, 70(4): 237-249.
|
35 |
Liu Y, Huang D, Li Y. Development of interval soft sensors using enhanced just-in-time learning and inductive confidence predictor[J]. Industrial & Engineering Chemistry Research, 2012, 51(8): 3356-3367.
|