1 |
曹鹏飞, 罗雄麟. 化工过程软测量建模方法研究进展[J]. 化工学报, 2013, 64(3): 788-800.
|
|
CaoP F, LuoX L. Modeling of soft sensor for chemical process[J]. CIESC Journal, 2013, 64(3): 788-800.
|
2 |
KadlecP, GabrysB, StrandtS. Data-driven soft sensors in the process industry[J]. Computers and Chemical Engineering, 2009, 33(4): 795-814.
|
3 |
孙茂伟, 杨慧中. 基于改进Bagging算法的高斯过程集成软测量建模[J]. 化工学报, 2016, 67(4): 1386-1391.
|
|
SunM W, YangH Z. Gaussian process ensemble soft-sensor modeling based on improved Bagging algorithm[J]. CIESC Journal, 2016, 67(4): 1386-1391.
|
4 |
仓文涛, 杨慧中. 基于改进随机梯度Boosting算法的软测量建模[J]. 化工学报, 2017, 68(3): 970-975.
|
|
CangW T, YangH Z. A Soft sensor modeling method based on modified stochastic gradient boosting[J]. CIESC Journal, 2017, 68(3): 970-975.
|
5 |
黄凤良. 软测量思想与软测量技术[J]. 计量学报, 2004, 25(3): 284-288.
|
|
HuangF L. Soft-sensing idea and soft-sensing Techniques[J]. Acta Metrologica Sinica, 2004, 25(3): 284-288.
|
6 |
俞金寿. 软测量技术及其应用[J]. 自动化仪表, 2008, 29(1): 1-7.
|
|
YuJ S. A soft sensor technology and its application[J]. Process Automation Instrumentation, 2008, 29(1): 1-7.
|
7 |
王强, 田学民. 基于KPCA-LSSVM的软测量建模方法[J]. 化工学报, 2011, 62(10): 2813-2817.
|
|
WangQ, TianX M. Soft sensing based on KPCA and LSSVM[J]. CIESC Journal, 2011, 62(10): 2813-2817.
|
8 |
李雅芹, 杨慧中. 局部KPLS特征提取的软测量建模方法[J]. 计算机工程与应用, 2011, 47(21): 235-238.
|
|
LiY Q, YangH Z. Soft sensor modeling based on local KPLS feature extraction and on-line LSSVM[J]. Computer Engineering and Applications, 2011, 47(21): 235-238.
|
9 |
夏陆岳, 王海宁, 朱鹏飞, 等. KPCA-bagging集成神经网络软测量建模方法[J]. 信息与控制, 2015, 44(5): 519-524.
|
|
XiaL B, WangH N, ZhuP F, et al. Soft-sensor modeling method using kernel principal component analysis Bagging ensemble neural network[J]. Information and Control, 2015, 44(5): 519-524.
|
10 |
TenenbaumJ B, SilvaV D, LangfordJ C. A global geometric framework for nonlinear dimensionality reduction [J]. Science, 2000, 290(5500): 2319-2323.
|
11 |
张妮, 田学民, 蔡连芳. 基于RISOMAP的非线性过程故障检测方法[J]. 化工学报, 2013, 64(6): 2125-2130
|
|
ZhangN, TianX M, CaiL F. Non-linear process fault detection method based on RISOMAP[J]. CIESC Journal, 2013, 64(6): 2125-2130.
|
12 |
ChoiH, ChoiS. Robust kernel isomap[J]. Pattern Recognition, 2007, 40(3): 853-862.
|
13 |
QuT G, CaiZ X. An improved isomap method for manifold learning[J]. International Journal of Intelligent Computing and Cybernetics, 2017, 10(1): 30-40.
|
14 |
RoweisS T, SaulL K. Nonlinear dimensionality reduction by locally linear embedding [J]. Science, 2000, 290(5500): 2323-2326.
|
15 |
薄翠梅, 韩晓春, 易辉, 等. 基于聚类选择k近邻的LLE算法及故障检测[J]. 化工学报, 2016, 67(3): 925-930.
|
|
BoC M, HanX C, YiH, et al. Neighborhood selection of LLE based on cluster for fault detection[J]. CIESC Journal, 2016, 67(3): 925-930.
|
16 |
JiangQ S, ZhuQ X, WangB F, et al. Nonlinear machine fault detection by semi-supervised Laplacian Eigenmaps [J]. Journal of Mechanical Science and Technology, 2017, 31(8): 3697-3703
|
17 |
王健, 冯健, 韩志艳. 基于流形学习的局部保持PCA算法在故障检测中的应用[J]. 控制与决策, 2013, 28(5): 683-687.
|
|
WangJ, FengJ, HanZ Y. Locally preserving PCA method based on manifold learning and its application in fault detection[J]. Control and Decision, 2013, 28(5): 683-687.
|
18 |
李荣雨, 王立明. 基于ISOMAP-ELM的软测量建模及化工应用[J]. 计量学报, 2016, 37(5): 548-552.
|
|
LiR Y, WangL M. Soft measurement modeling and chemical application based on ISOMAP-ELM neural network[J]. ACTA Metrologica Sinica, 2016, 37(5): 548-552.
|
19 |
马玉鑫, 王梦灵, 侍洪波. 基于局部线性嵌入算法的化工过程故障检测[J]. 化工学报, 2012, 63(7): 2121-2127.
|
|
MaY X, WangM L, ShiH B. Fault detection for chemical process based on locally linear embedding[J]. CIESC Journal, 2012, 63(7): 2121-2127.
|
20 |
MengD, LeungY, FungT, et al. Nonlinear dimensionality reduction of data lying on the multicluster manifold[J]. IEEE Transactions on Systems Man & Cybernetics Part B Cybernetics, 2008, 38(4): 1111-1122.
|
21 |
YangW K, SunC Y, ZhangL. A multi-manifold discriminant analysis method for image feature extraction[J]. Pattern Recognition, 2011, 44(8): 1649-1657.
|
22 |
WangY, JiangY, WuY, et al. Spectral clustering on multiple manifolds[J]. IEEE Transactions on Neural Networks, 2011, 22(7): 1149-1161.
|
23 |
LiJ J, WuY, ZhaoJ D, et al. Multi-manifold sparse graph embedding for multi-modal image classification [J]. Neurocomputing, 2016, 173(3): 501-510.
|
24 |
双翼帆, 顾幸生. 基于改进的快速搜索聚类算法的高斯过程回归的催化重整脱氯前氢气纯度多模型建模方法[J]. 化工学报, 2016, 67(3): 765-772.
|
|
ShuangY F, GuX S. Multi-model soft sensor for hydrogen purity in catalytic reforming process based on improved fast search clustering algorithm and Gaussian processes regression[J]. CIESC Journal, 2016, 67(3): 765-772.
|
25 |
HettiarachchiR, PetersJ F. Multi-manifold LLE learning in pattern recognition[J]. Pattern Recognition, 2015, 48(9): 2947-2960.
|
26 |
陈定三, 杨慧中. 基于局部重构融合流形聚类的多模型软测量建模[J]. 化工学报, 2011, 62(8): 2281-2286.
|
|
ChenD S, YangH Z. Multiple model soft sensor based on local reconstruction and fusion manifold clustering[J]. CIESC Journal, 2011, 62(8): 2281-2286.
|
27 |
陈定三, 杨慧中. 用于多模型软测量的扩张搜索聚类算法[J]. 计算机与应用化学, 2011, 28(4): 407-410.
|
|
ChenD S, YangH Z. Multiple models soft sensor technique based on expanding search clustering algorithm[J]. Computer and Applied Chemistry, 2011, 28(4): 407-410.
|
28 |
张孙力, 杨慧中. 一种基于改进的扩张搜索聚类算法的软测量建模方法[J]. 南京理工大学学报, 2017, 41(5): 574-580.
|
|
ZhangS L, YangH Z. Soft sensor modeling method based on improved expanding searching clustering algorithm [J]. Journal of Nanjing University of Science and Technology, 2017,41(5): 574-580.
|
29 |
KazuoM, AkiyoshiS. Dijkstra’s algorithm and L-concave function maximization[J]. Mathematical Programming, 2014, 145(1/2): 163-177.
|
30 |
MukherjeeS. Dijkstra’s algorithm for solving the short path problem on networks under intuitionistic fuzzy environment[J]. Journal of Mathematical Modeling and Algorithms, 2012, 11(4): 345-359.
|
31 |
CailliezF. The analytical solution of the additive constant problem[J]. Psychometrika, 1983, 48(2): 305-308.
|